• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Automatic Modulation Classification: Principles, Algorithms and Applications » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2949965]
• Literatura piękna
 [1857847]

  więcej...
• Turystyka
 [70818]
• Informatyka
 [151303]
• Komiksy
 [35733]
• Encyklopedie
 [23180]
• Dziecięca
 [617748]
• Hobby
 [139972]
• AudioBooki
 [1650]
• Literatura faktu
 [228361]
• Muzyka CD
 [398]
• Słowniki
 [2862]
• Inne
 [444732]
• Kalendarze
 [1620]
• Podręczniki
 [167233]
• Poradniki
 [482388]
• Religia
 [509867]
• Czasopisma
 [533]
• Sport
 [61361]
• Sztuka
 [243125]
• CD, DVD, Video
 [3451]
• Technologie
 [219309]
• Zdrowie
 [101347]
• Książkowe Klimaty
 [123]
• Zabawki
 [2362]
• Puzzle, gry
 [3791]
• Literatura w języku ukraińskim
 [253]
• Art. papiernicze i szkolne
 [7933]
Kategorie szczegółowe BISAC

Automatic Modulation Classification: Principles, Algorithms and Applications

ISBN-13: 9781118906491 / Angielski / Twarda / 2015 / 184 str.

Asoke K. Nandi; Zhechen Zhu
Automatic Modulation Classification: Principles, Algorithms and Applications Nandi, Asoke K.; Zhu, Zhechen 9781118906491 John Wiley & Sons - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Automatic Modulation Classification: Principles, Algorithms and Applications

ISBN-13: 9781118906491 / Angielski / Twarda / 2015 / 184 str.

Asoke K. Nandi; Zhechen Zhu
cena 594,79
(netto: 566,47 VAT:  5%)

Najniższa cena z 30 dni: 471,66
Termin realizacji zamówienia:
ok. 16-18 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!

Automatic Modulation Classification (AMC) has been a key technology in many military, security, and civilian telecommunication applications for decades. In military and security applications, modulation often serves as another level of encryption; in modern civilian applications, multiple modulation types can be employed by a signal transmitter to control the data rate and link reliability. This book offers comprehensive documentation of AMC models, algorithms and implementations for successful modulation recognition. It provides an invaluable theoretical and numerical comparison of AMC algorithms, as well as guidance on state-of-the-art classification designs with specific military and civilian applications in mind. Key Features:

  • Provides an important collection of AMC algorithms in five major categories, from likelihood-based classifiers and distribution-test-based classifiers to feature-based classifiers, machine learning assisted classifiers and blind modulation classifiers
  • Lists detailed implementation for each algorithm based on a unified theoretical background and a comprehensive theoretical and numerical performance comparison
  • Gives clear guidance for the design of specific automatic modulation classifiers for different practical applications in both civilian and military communication systems
  • Includes a MATLAB toolbox on a companion website offering the implementation of a selection of methods discussed in the book

Kategorie:
Technologie
Kategorie BISAC:
Technology & Engineering > Electronics - Circuits - General
Technology & Engineering > Signals & Signal Processing
Wydawca:
John Wiley & Sons
Język:
Angielski
ISBN-13:
9781118906491
Rok wydania:
2015
Ilość stron:
184
Waga:
0.45 kg
Wymiary:
24.13 x 16.76 x 1.52
Oprawa:
Twarda
Wolumenów:
01
Dodatkowe informacje:
Bibliografia

1. Introduction

1.1. Background

1.2. Applications of AMC

1.2.1. Military Applications

1.2.2. Civilian Applications

1.3. Field Overview and Book Scope

1.4.Modulation and Communication System Basics

1.4.1. Analogue Systems and Modulations

1.4.2. Digital Systems and Modulations

1.4.3. Received Signal with Channel Effects

1.5. Conclusion

2. Signal Models for Modulation Classification

2.1. Introduction

2.2. Signal Model in AWGN Channel

2.2.1. Signal Distribution of I–Q segments

2.2.2. Signal Distribution of Signal Phase

2.2.3. Signal Distribution of Signal Magnitude

2.3. Signal Models in Fading Channel

2.4. Signal Models in Non–Gaussian Channel

2.4.1. Middleton s Class A Model

2.4.2. Symmetric Alpha Stable Model

2.4.3. Gaussian Mixture Model

2.5.Conclusion

3. Likelihood Based Classifiers

3.1. Introduction

3.2. Maximum Likelihood Classifiers

3.2.1. Likelihood Function in AWGN channels

3.2.2. Likelihood Function in fading channels

3.2.3. Likelihood Function in non–Gaussian noise channels

3.2.4. Maximum Likelihood Classification Decision Making

3.3. Likelihood Ratio Test for Unknown Channel Parameters

3.3.1. Average Likelihood Ratio Test

3.3.2. Generalized Likelihood Ratio Test

3.3.3. Hybrid Likelihood Ratio Test

3.4. Complexity reduction

3.4.1. Discrete Likelihood Ratio Test and Lookup Table

3.4.2. Minimum Distance Likelihood Function

3.4.3. Non–parametric Likelihood Function

3.5. Conclusion

4. Distribution Test Based Classifier

4.1. Introduction

4.2. Kolmogorov–Smirnov (KS) Test Classifier

4.2.1. The KS test for goodness–of–fit

4.2.2. One sample KS test classifier

4.2.3. Two sample KS test classifier

4.2.4. Phase Difference Classifier

4.3. Cramer–von Mises Test Classifier

4.4. Anderson–Darling Test Classifier

4.5. Optimized Distribution Sampling Test Classifier

4.5.1. Sampling Location Optimization

4.5.2. Distribution sampling

4.5.3. Classification Decision Metrics

4.5.4. Modulation Classification Decision Making

4.6. Conclusion

5. Modulation Classification Features

5.1. Introduction

5.2. Signal Spectral Based Features

5.2.1. Signal Spectral Based Features

5.2.2. Spectral Based Features Specialties

5.2.3. Spectral Based Features Decision Making

5.2.4. Decision Threshold Optimization

5.3. Wavelet Transform Based Features

5.4. High–order Statistics Based Features

5.4.1. High–order Moment Based Features

5.4.2. High–order Cumulant Based Features

5.5. Cyclostationary Analysis Based Features

5.6.Conclusion

6. Machine Learning for Modulation Classification

6.1. Introduction

6.2. K–nearest Neighbour Classifier

6.2.1. Reference Feature Space

6.2.2. Distance Definition

6.2.3. K–nearest Neighbour Decision

6.3. Support Vector Machine Classifier

6.4. Logistic Regression for Feature Combination

6.5. Artificial Neural Network for Feature Combination

6.6. Genetic Algorithm for Feature Selection

6.7. Genetic Programming for Feature Selection and Combination

6.7.1. Tree Structured Solution

6.7.2. Genetic Operators

6.7.3. Fitness Evaluation

6.8.Conclusion

7. Blind Modulation Classification

7.1. Introduction

7.2. Expectation Maximization with Likelihood Based Classifier

7.2.1. Expectation Maximization Estimator

7.2.2. Maximum Likelihood Classifier

7.2.3. Minimum Likelihood Distance Classifier

7.3. Minimum Distance Centroid Estimation and Non–parametric Likelihood Classifier

7.3.1. Minimum Distance Centroid Estimation

7.3.2. Non–parametric Likelihood Function

7.4.Conclusion

8. Comparison of Modulation Classifiers

8.1. Introduction

8.2. System Requirements and Applicable Modulations

8.3. Classification Accuracy With Additive Noise

8.3.1. Benchmarking Classifiers

8.3.2. Performance Comparison in AWGN Channel

8.4. Classification Accuracy With  Limited Signal Length

8.5. Classification Robustness Against Phase Offset

8.6. Classification Robustness Against Frequency Offset

8.7. Computational Complexity

8.8. Conclusion

9. Modulation Classification for Civilian Applications

9.1. Introduction

9.2. Modulation Classification for High Order Modulations

9.3. Modulation Classification for Link Adaptation Systems

9.4. Modulation Classification for MIMO Systems

9.5. Conclusion

10. Modulation Classifier Design for Military Applications

10.1. Introduction

10.2. Modulation Classifier with Unknown Modulation Pool

10.3. Modulation Classifier against Low Probability of Detection

10.3.1. Classification of DSSS signal

10.3.2. Classification of FHSS signal

10.4. Conclusion

Automatic Modulation Classification (AMC) has been a key technology in many military, security, and civilian telecommunication applications for decades. In military and security applications, modulation often serves as another level of encryption; in modern civilian applications, multiple modulation types can be employed by a signal transmitter to control the data rate and link reliability.

This book offers comprehensive documentation of AMC models, algorithms and implementations for successful modulation recognition. It provides an invaluable theoretical and numerical comparison of AMC algorithms, as well as guidance on state–of–the–art classification designs with specific military and civilian applications in mind.

Key Features:

  • Provides an important collection of AMC algorithms in five major categories, from likelihood–based classifiers and distribution–test–based classifiers to feature–based classifiers, machine learning assisted classifiers and blind modulation classifiers
  • Lists detailed implementation for each algorithm based on a unified theoretical background and a comprehensive theoretical and numerical performance comparison
  • Gives clear guidance for the design of specific automatic modulation classifiers for different practical applications in both civilian and military communication systems
  • Includes a MATLAB toolbox on a companion website offering the implementation of a selection of methods discussed in the book



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia