• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Automated Deep Learning Using Neural Network Intelligence: Develop and Design Pytorch and Tensorflow Models Using Python » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946350]
• Literatura piękna
 [1816154]

  więcej...
• Turystyka
 [70666]
• Informatyka
 [151172]
• Komiksy
 [35576]
• Encyklopedie
 [23172]
• Dziecięca
 [611458]
• Hobby
 [135995]
• AudioBooki
 [1726]
• Literatura faktu
 [225763]
• Muzyka CD
 [378]
• Słowniki
 [2917]
• Inne
 [444280]
• Kalendarze
 [1179]
• Podręczniki
 [166508]
• Poradniki
 [469467]
• Religia
 [507199]
• Czasopisma
 [496]
• Sport
 [61352]
• Sztuka
 [242330]
• CD, DVD, Video
 [3348]
• Technologie
 [219391]
• Zdrowie
 [98638]
• Książkowe Klimaty
 [124]
• Zabawki
 [2382]
• Puzzle, gry
 [3525]
• Literatura w języku ukraińskim
 [259]
• Art. papiernicze i szkolne
 [7107]
Kategorie szczegółowe BISAC

Automated Deep Learning Using Neural Network Intelligence: Develop and Design Pytorch and Tensorflow Models Using Python

ISBN-13: 9781484281482 / Angielski / Miękka / 2022

Ivan Gridin
Automated Deep Learning Using Neural Network Intelligence: Develop and Design Pytorch and Tensorflow Models Using Python Gridin, Ivan 9781484281482 Apress - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Automated Deep Learning Using Neural Network Intelligence: Develop and Design Pytorch and Tensorflow Models Using Python

ISBN-13: 9781484281482 / Angielski / Miękka / 2022

Ivan Gridin
cena 261,63
(netto: 249,17 VAT:  5%)

Najniższa cena z 30 dni: 250,57
Termin realizacji zamówienia:
ok. 22 dni roboczych.

Darmowa dostawa!

Optimize, develop, and design PyTorch and TensorFlow models for a specific problem using the Microsoft Neural Network Intelligence (NNI) toolkit. This book includes practical examples illustrating automated deep learning approaches and provides techniques to facilitate your deep learning model development.

The first chapters of this book cover the basics of NNI toolkit usage and methods for solving hyper-parameter optimization tasks. You will understand the black-box function maximization problem using NNI, and know how to prepare a TensorFlow or PyTorch model for hyper-parameter tuning, launch an experiment, and interpret the results. The book dives into optimization tuners and the search algorithms they are based on: Evolution search, Annealing search, and the Bayesian Optimization approach. The Neural Architecture Search is covered and you will learn how to develop deep learning models from scratch. Multi-trial and one-shot searching approaches of automatic neural network design are presented. The book teaches you how to construct a search space and launch an architecture search using the latest state-of-the-art exploration strategies: Efficient Neural Architecture Search (ENAS) and Differential Architectural Search (DARTS). You will learn how to automate the construction of a neural network architecture for a particular problem and dataset. The book focuses on model compression and feature engineering methods that are essential in automated deep learning. It also includes performance techniques that allow the creation of large-scale distributive training platforms using NNI.

After reading this book, you will know how to use the full toolkit of automated deep learning methods. The techniques and practical examples presented in this book will allow you to bring your neural network routines to a higher level.


What You Will Learn
  • Know the basic concepts of optimization tuners, search space, and trials
  • Apply different hyper-parameter optimization algorithms to develop effective neural networks
  • Construct new deep learning models from scratch
  • Execute the automated Neural Architecture Search to create state-of-the-art deep learning models
  • Compress the model to eliminate unnecessary deep learning layers

Who This Book Is For 

Intermediate to advanced data scientists and machine learning engineers involved in deep learning and practical neural network development

Intermediate-Advanced user level

Kategorie:
Informatyka, Bazy danych
Kategorie BISAC:
Computers > Artificial Intelligence - General
Computers > Languages - Python
Mathematics > Prawdopodobieństwo i statystyka
Wydawca:
Apress
Język:
Angielski
ISBN-13:
9781484281482
Rok wydania:
2022
Waga:
0.77 kg
Wymiary:
25.4 x 17.8
Oprawa:
Miękka
Dodatkowe informacje:
Wydanie ilustrowane

Chapter 1: Introduction to Neural Network Intelligence

1.1 Installation
1.2 Trial, search space, experiment
1.3 Finding maxima of multivariate function
1.4 Interacting with NNI

Chapter 2:Hyper-Parameter Tuning
2.1 Preparing a model for hyper-parameter tuning
2.2 Running experiment
2.3 Interpreting results
2.4 Debugging

Chapter 3:  Hyper-Parameter Tuners

Chapter 4:  Neural Architecture Search: Multi-trial
4.1 Constructing a search space
4.2 Running architecture search
4.3 Exploration strategies
4.4 Comparing exploration strategies

Chapter 5: Neural Architecture Search: One-shot
5.1 What is one-shot NAS?
5.2 ENAS
5.3 DARTS

Chapter 6: Model Compression
6.1 What is model compression?
6.2 Compressing your model
6.3 Pruning
6.4 Quantization

Chapter 7: Advanced NNI

Ivan Gridin is a machine learning expert from Moscow who has worked on distributive high-load systems and implemented different machine learning approaches in practice. One of the primary areas of his research is the design and analysis of predictive time series models. Ivan has fundamental math skills in probability theory, random process theory, time series analysis, machine learning, deep learning, and optimization. He has published books on genetic algorithms and time series analysis.

Optimize, develop, and design PyTorch and TensorFlow models for a specific problem using the Microsoft Neural Network Intelligence (NNI) toolkit. This book includes practical examples illustrating automated deep learning approaches and provides techniques to facilitate your deep learning model development.

The first chapters of this book cover the basics of NNI toolkit usage and methods for solving hyper-parameter optimization tasks. You will understand the black-box function maximization problem using NNI, and know how to prepare a TensorFlow or PyTorch model for hyper-parameter tuning, launch an experiment, and interpret the results. The book dives into optimization tuners and the search algorithms they are based on: Evolution search, Annealing search, and the Bayesian Optimization approach. The Neural Architecture Search is covered and you will learn how to develop deep learning models from scratch. Multi-trial and one-shot searching approaches of automatic neural network design are presented. The book teaches you how to construct a search space and launch an architecture search using the latest state-of-the-art exploration strategies: Efficient Neural Architecture Search (ENAS) and Differential Architectural Search (DARTS). You will learn how to automate the construction of a neural network architecture for a particular problem and dataset. The book focuses on model compression and feature engineering methods that are essential in automated deep learning. It also includes performance techniques that allow the creation of large-scale distributive training platforms using NNI.

After reading this book, you will know how to use the full toolkit of automated deep learning methods. The techniques and practical examples presented in this book will allow you to bring your neural network routines to a higher level.

What You Will Learn
  • Know the basic concepts of optimization tuners, search space, and trials
  • Apply different hyper-parameter optimization algorithms to develop effective neural networks
  • Construct new deep learning models from scratch
  • Execute the automated Neural Architecture Search to create state-of-the-art deep learning models
  • Compress the model to eliminate unnecessary deep learning layers




Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2026 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia