ISBN-13: 9783642639579 / Angielski / Miękka / 2011 / 411 str.
ISBN-13: 9783642639579 / Angielski / Miękka / 2011 / 411 str.
This book bridges a gap in the literature by bringing together leading specialists from different backgrounds. It addresses the specific need for a readable book on this very interdisciplinary and new topic at research level.
"[...] written for people with a strong background in science. I nonetheless found it a joy to read and I would strongly recommend it to those who wish to know the latest in the scientific search for ET." (Neil English, Astronomy Now, Aug. 2003)
"[...] Astrobiology challenges science in unique ways, in particular the well-known problem of identifying life when we only have one prototype to work from, and I am sure that newcomers to this field and established workers will both find this book very rewarding." (International Journal of Astrobiology, 2002)
"It is a real pleasure to come across a volume like Astrobiology." (Biologist, 2002)
I Organic Material in Space and Habitable Zones.- 1 From Molecular Clouds to the Origin of Life.- 1.1 The Search for Large Organic Molecules in Dense Clouds.- 1.1.1 The Search for Amino Acids in the Interstellar Medium.- 1.1.2 Organic Molecules in our Galactic Center.- 1.2 Molecules in Protoplanetary Disks.- 1.3 Diffuse Interstellar Clouds.- 1.4 The Evolution of Organic Molecules During Solar System Formation.- 1.4.1 Comets.- 1.4.2 Meteorites.- 1.5 Implications for the Origin of Life on Earth.- 1.6 Conclusions.- 1.7 References.- 2 The Diversity of Extrasolar Planets Around Solar-Type Stars.- 2.1 Detections: Milestones and Recent Announcements.- 2.2 Very Recent ELODIE and CORALIE Detections.- 2.3 Observed Properties of Extrasolar Planets.- 2.4 Hot Jupiters.- 2.4.1 Hot Jupiters: Direct Detections.- 2.5 The Mass Function of Substellar Companions.- 2.6 Orbital Element Distributions: Traces of Planet Formation.- 2.6.1 The Distribution of Periods.- 2.6.2 The Distribution of Eccentricities.- 2.7 Metal Enrichment of Stars Bearing Planets.- 2.8 Summary and Future Perspectives.- 2.9 References.- 3 Habitable Zones in Extrasolar Planetary Systems.- 3.1 Models for Calculating the HZ in the Solar System.- 3.2 HZ Around Other Main Sequence Stars.- 3.3 Conclusions.- 3.4 References.- 4 Viable Transfer of Microorganisms in the Solar System and Beyond.- 4.1 Scenario of Interplanetary Transfer of Life Within the Solar System.- 4.2 Survival of the Escape Process.- 4.3 Survival of the Interplanetary Transfer Phase.- 4.3.1 Space Environment of Interest.- 4.3.2 Approaches to Studying the Biological Effects ofSpace.- 4.3.3 Biological Effects of the Vacuum of Space.- 4.3.4 Biological Effects of Galactic Cosmic Radiation.- 4.3.5 Biological Effects of Extraterrestrial Solar UV Radiation.- 4.3.6 Bacterial Survival During Long-Term Dormancy.- 4.3.7 Combined Effects of the Complex Matrix of Space Parameters.- 4.4 Survival of the Landing Process.- 4.5 Conclusions: On the Likelihood of Interplanetary Transfer of Life as a Mode of Distribution of Life Throughout the Solar System.- 4.6 Outlook: On the Likelihood of Transport of Viable Microorganisms Between Solar Systems.- 4.7 References.- II Water and Life.- 5 Water, the Spring of Life.- 5.1 Water as a Diffusion Milieu.- 5.2 Water as a Selective Solvent.- 5.3 Water as a Clay Producer.- 5.4 Water Structures the Biopolymers.- 5.5 Water as a Driving Power for Chemistry.- 5.6 Water as a Heat Dissipator.- 5.7 Life Without Water: The Case for Titan.- 5.8 Conclusion.- 5.9 References.- 6 Geomorphological Record of Water-Related Erosion on Mars.- 6.1 Outflow Channels.- 6.2 Valley Networks.- 6.3 Periglacial and Permafrost Landforms.- 6.3.1 Debris Flow and Terrain Softening.- 6.3.2 Ground Ice.- 6.3.3 Rampart Craters.- 6.3.4 Polygons.- 6.3.5 Thermokarst.- 6.4 Glacial Landforms.- 6.4.1 Eskers and Moraines.- 6.5 Volcano Ice Interactions.- 6.6 Chronology of Martian Erosional Processes.- 6.7 Standing Water.- 6.8 Origin of Martian Surface Erosion and Implications for the Palaeoclimate.- 6.9 References.- 7 Europa’s Crust and Ocean: How Tides Create a Potentially Habitable Physical Setting.- 7.1 Tidally Driven Geology and Geophysics.- 7.1.1 Tidal Heating.- 7.1.2 Tidally Driven Rotation.- 7.1.3 Tidal Stress on the Ice Crust.- 7.1.4 Chaotic Terrain.- 7.2 A Habitable Setting.- 7.3 References.- 8 Permafrost Model of Extraterrestrial Habitat.- 8.1 The Importance of Permafrost.- 8.2 Parameters of Permafrost Microbial Habitat.- 8.2.1 Temperature.- 8.2.2 Iciness and Unfrozen Water.- 8.2.3 Ice and Permafrost as a Habitat.- 8.2.4 Gases and Supercooled Water.- 8.2.5 Age and Radiation.- 8.3 Biodiversity in Permafrost.- 8.4 How Long the Life Might Be Preserved.- 8.5 The Perspectives for Future Studies.- 8.6 References.- 9 Microbial Life in Terrestrial Permafrost: Methanogenesis and Nitrification in Gelisols as Potentials for Exobiological Processes.- 9.1 Permafrost Soils and Active Layer.- 9.2 Microbial Life under Extreme Conditions.- 9.3 Microbial Key Processes.- 9.3.1 Methanogenesis.- 9.3.2 Nitrification.- 9.4 Methods for Analogue Studies of Microbial Processes in Terrestrial and Extraterrestrial Habitats.- 9.4.1 Methanogenic and Nitrifying Populations.- 9.4.2 In situ Activity.- 9.4.3 Isotopic Analysis: Carbon Fractionation via Microbial Processes in Permafrost.- 9.4.4 Simulation Experiments.- 9.5 Conclusion and Future Perspectives.- 9.6 References.- 10 Life in Cold Lakes.- 10.1 Source of Samples and DNA Analyses.- 10.2 The Rich Diversity of Bacteria and Archaea.- I 0.3 Conclusions.- 10.4 References.- 11 Hyperthermophilic Microorganisms.- 11.1 Biotopes of Hyperthermophiles.- 11.1.1 Terrestrial Biotopes.- 11.1.2 Marine Biotopes.- 11.2 Phylogeny of Hyperthermophiles.- 11.3 Taxonomy of Hyperthermophiles.- 11.4 Strategies of Life and Environmental Adaptations of Hyperthermophiles.- 11.4.1 General Metabolic Potentialities.- 11.4.2 Physiological Properties.- 11.5 Conclusions: Hyperthermophiles in the History of Life.- 11.6 References.- 12 Halophilic Microorganisms.- 12.1 Adaptation to Saline Environments.- 12.1.1 Salt-in-Cytoplasm Mechanism.- 12.1.2 Organic Osmolyte Mechanism.- 12.2 Saline Terrestrial Environments and Their Inhabitants.- 12.2.1 Distribution and Dating of Ancient Salt Sediments.- 12.2.2 Subterranean Halophilic Microorganisms and Their Relation to Surface Halophiles.- 12.2.3 Uncultivated Phylotypes.- 12.2.4 Distribution, Origin and Dispersal of Haloarchaea.- 12.2.5 Long-Term Survival.- 12.3 Relevance to Astrobiology.- 12.4 References.- III Electromagnetic Fields, Radiation and Life.- 13 Martian Atmospheric Evolution: Implications of an Ancient Intrinsic Magnetic Field.- 13.1 Nonthermal Atmospheric Escape Processes.- 13.1.1 Charge Exchange and Dissociative Recombination.- 13.1.2 Atmospheric Sputtering.- 13.1.3 Solar-Wind Interaction Processes.- 13.1.4 Ionospheric Bubbles.- 13.2 The Early Dense Martian Atmosphere.- 13.2.1 The Quest for Water.- 13.3 The Intrinsic Martian Magnetic Field.- 13.3.1 The Ancient Martian Magnetosphere: Constraints for Atmospheric Escape.- 13.4 Shielding of Hypothetical Primitive Martian Life Forms from Energetic Cosmic Particles and Radiation.- 13.4.1 Cosmic Ray Particle Fluxes on the Surface of Ancient Mars.- 13.5 Conclusions.- 13.6 References.- 14 The Ultraviolet Radiation Environment of Earth and Mars: Past and Present.- 14.1 UV Radiation on Early Earth.- 14.1.1 UV Radiation During the Archean.- 14.1.2 Biological Effects of High UV Radiation Flux.- 14.1.3 Beneficial Effects of High UV Radiation on Archean Earth?.- 14.2 The Ultraviolet History of Mars and Venus: An Exercise in Comparative Evolutionary Photobiology.- 14.3 Conclusions.- 14.4 References.- 15 Ultraviolet Radiation in Planetary Atmospheres and Biological Implications.- 15.1 Solar UV Radiation.- 15.2 Biological Effects of Solar UV Radiation.- 15.3 Biological UV Dosimetry.- 15.4 Experimental Determination of the Biological Effectiveness of Extraterrestrial Solar UV Radiation.- 15.5 Experimental Determination of the Photobiological Effects of Different Ozone Concentrations.- 15.6 Conclusions.- 15.7 References.- 16 Environmental UV Radiation: Biological Strategies for Protection and Avoidance.- 16.1 Effects of UVR and Responses in Terrestrial Ecosystems.- 16.2 Techniques for Studying Microbes and Pigments in situ.- 16.2.1 Epifluorescence Microscopy.- 16.2.2 Raman Spectroscopy of Pigments and Other Compounds in situ.- 16.3 Screening Strategies.- 16.4 Quenching Strategies.- 16.5 Escape and A voidance Strategies (Shade Adaptation).- 16.5.1 Epilithic Lichens.- 16.5.2 Endolithic Communities.- 16.5.3 Stromatolites.- 16.6 Strategies for Extreme UV on Early Earth and Mars.- 16.7 Panspermia and UV Avoidance.- 16.8 Diagnosis of Key Pigments on Earth and Mars.- 16.9 References.- 17 Life under Conditions of Ionizing Radiation.- 17.1 Space Radiation Environments.- 17.1.1 Galactic Cosmic Radiation (GCR).- 17.1.2 Solar Particle Radiation (SPR).- 17.1.3 Radiation Belts in Planetary Magnetic Fields.- 17.1.4 Modulation by Planetary Magnetic Fields, Atmospheres and Surfaces.- 17.2 Radiation Environments on Planets and Other Celestial Bodies.- 17.2.1 Earth.- 17.2.2 Mars.- 17.2.3 Jupiter’s Moon Europa.- 17.3 Measures of Ionizing Radiation.- 17.3.1 Physical Measures.- 17.3.2 Biologically Weighted Measures.- 17.4 Interaction of Radiation with Biological Material.- 17.4.1 Radiation Chemistry of Water.- 17.4.2 DNA Damage and Cellular Repair Pathways.- 17.5 Cellular Radiation Responses.- 17.5.1 Radiation Sensitivity of Organisms.- 17.5.2 Mutation Induction.- 17.5.3 Factors Influencing Cellular Radiation Effects.- 17.6 The Chances of Life Surviving Space Radiation Conditions.- 17.6.1 Interplanetary Transfer of Life.- 17.6.2 Putative Habitats on Other Planets.- 17. 7 References.- IV Gravity and Life.- 18 Graviperception and Graviresponse at the Cellular Level.- 18.1 Protists.- 18.1.1 Perception of Varied Acceleration.- 18.1.2 Models of Graviperception.- 18.1.3 Energy Considerations.- 18.104 Gravisensory Channels.- 18.2 Mammalian Cells.- 18.2.1 Gravity Effects and Consequences.- 18.3 Conclusions.- 18.4 References.- 19 Gravistimulated Effects in Plants.- 19.1 Graviperception as the Primary Gravity-Sensing Mechanism.- 19.1.1 Graviperception in Unicellular Plants.- 19.1.2 Graviperception in Multicellular Plants.- 19.2 The Gravity Signal Transduction Pathway.- 19.3 The Graviresponse: The Curvature of Organs.- 19.3.1 Graviresponses in Unicellular Plants or Plant Systems.- 19.3.2 Graviresponses in Multicellular Plants.- 19.4 References.- 20 Gravitational Zoology: How Animals Use and Cope with Gravity.- 20.1 Gravity as a Factor of Physical Restriction: A Brief History of Evolutionary Challenges To Surmount It.- 20.2 Gravity as a Cue for Orientation and Postural Control.- 20.2.1 Graviperception in Unicellular Animals.- 20.2.2 Graviperception in Multicellular Animals.- 20.3 Behavior and Differentiation of Animals at Altered Gravity.- 20.3.1 Invertebrates.- 20.3.2 Vertebrates.- 20.4 Conclusion.- 20.5 References.- V Complexity and Life.- 21 Scaling Phenomena and the Emergence of Complexity in Astrobiology.- 21.1 Astrobiology as the Realm of Emergence, Hierarchies and Scaling.- 21.2 Implications of Power Law Behavior.- 21.3 Exponents and Their Meaning.- 21.4 Where and How Have Power Laws Been Used?.- 21.5 Examples of Power Laws: From Cosmology to Biology.- 21.5.1 Examples from Cosmology and Astrophysics.- 21.5.2 Examples from Planetology.- 21.5.3 Examples from Biochemistry.- 21.5.4 Examples from Biology.- 21.6 Conclusions.- 21.7 References.- 22 Molecular Self-Assembly and the Origin of Life.- 22.1 Key Questions for the Emergence of Life.- 22.2 Directed Molecular Self-Assembly.- 22.3 Direct Microscopic Verification of Self-Assembled DNA Bases on Mineral Template Surfaces.- 22.4 Genetically Based Supramolecular Architectures from Self-Assembled DNA Bases Coding for Amino Acids.- 22.5 Conclusion.- 22.6 References.- 23 Search for Morphological and Biogeochemical Vestiges of Fossil Life in Extraterrestrial Settings: Utility of Terrestrial Evidence.- 23.1 Paleontological Evidence.- 23.1.1 Microbialites.- 23.1.2 Cellular Microfossils.- 23.2 Biogeochemical Evidence.- 23.2.1 Sedimentary Organic Carbon as a Recorder of Former Life Processes.- 23.2.2 13C/12C in Sedimentary Organic Matter: Index of Autotrophic Carbon Fixation.- 23.3 Conclusions and Outlook.- 23.4 References.- VI Forthcoming Space Missions Relevant for Astrobiology.- 24 Space Activities in Exo-Astrobiology.- 24.1 Astrobiological Potential of Space Astronomy Missions.- 24.l.l Infrared Spectroscopy of Cosmic Dust and Organics.- 24.1.2 The New Generation Space Telescope (NGST).- 24.1.3 Exoplanets from Space: GAIA, COROT, EDDINGTON, KEPLER and DARWIN.- 24.1.4 Global Life Signatures on Earth?.- 24.2 Astrobiological Potential of Planetary Missions.- 24.2.1 CASSINI-HUYGENS.- 24.2.2 STARDUST.- 24.2.3 ROSETTA.- 24.2.4 MARS-EXPRESS and Future Mars Missions.- 24.2.5 Europa Missions.- 24.2.6 Moon, Mercury, Formation of Planets and the Early Frustration of Life.- 24.2.7 Space Exposure Experiments.- 24.3 Conclusion: Roadmap for Astrobiology and Long-Term Space Exploration.- 24.3.1 Experimenting for Life in the Universe.- 24.3.2 Expanding Life in the Solar System.- List of Contributors.
How did life originate in the universe? How did it all start after the creation of matter and the formation of elements in the stars? What are the pathways from the first organic molecules in space to the evolution of complex life forms on Earth and perhaps elsewhere? And how will it all end? The Universe itself sets the stage for the very interdisciplinary field of astrobiology that attempts to answer such questions, the central one being: What is the (cosmic) recipe for life? Currently there are only very few known elements in this vast mosaic. This book bridges a gap in the literature by bringing together leading specialists from different backgrounds who lecture on their fields, with close relevance to astrobiology, providing tutorial accounts that lead all the way to the forefront of research. The book will thus be useful for students, lecturers and reseachers alike.
1997-2025 DolnySlask.com Agencja Internetowa