• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Artificial Neural Networks with Java: Tools for Building Neural Network Applications » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946600]
• Literatura piękna
 [1856966]

  więcej...
• Turystyka
 [72221]
• Informatyka
 [151456]
• Komiksy
 [35826]
• Encyklopedie
 [23190]
• Dziecięca
 [619653]
• Hobby
 [140543]
• AudioBooki
 [1577]
• Literatura faktu
 [228355]
• Muzyka CD
 [410]
• Słowniki
 [2874]
• Inne
 [445822]
• Kalendarze
 [1744]
• Podręczniki
 [167141]
• Poradniki
 [482898]
• Religia
 [510455]
• Czasopisma
 [526]
• Sport
 [61590]
• Sztuka
 [243598]
• CD, DVD, Video
 [3423]
• Technologie
 [219201]
• Zdrowie
 [101638]
• Książkowe Klimaty
 [124]
• Zabawki
 [2473]
• Puzzle, gry
 [3898]
• Literatura w języku ukraińskim
 [254]
• Art. papiernicze i szkolne
 [8170]
Kategorie szczegółowe BISAC

Artificial Neural Networks with Java: Tools for Building Neural Network Applications

ISBN-13: 9781484273678 / Angielski / Miękka / 2021 / 414 str.

Igor Livshin
Artificial Neural Networks with Java: Tools for Building Neural Network Applications Igor Livshin 9781484273678 Apress - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Artificial Neural Networks with Java: Tools for Building Neural Network Applications

ISBN-13: 9781484273678 / Angielski / Miękka / 2021 / 414 str.

Igor Livshin
cena 262,25 zł
(netto: 249,76 VAT:  5%)

Najniższa cena z 30 dni: 250,57 zł
Termin realizacji zamówienia:
ok. 22 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!

Intermediate-Advanced user level

Kategorie:
Informatyka, Bazy danych
Kategorie BISAC:
Computers > Artificial Intelligence - General
Computers > Languages - Java
Computers > Programming - Open Source
Wydawca:
Apress
Język:
Angielski
ISBN-13:
9781484273678
Rok wydania:
2021
Ilość stron:
414
Waga:
1.10 kg
Wymiary:
25.4 x 17.78 x 3.33
Oprawa:
Miękka
Wolumenów:
01
Dodatkowe informacje:
Wydanie ilustrowane

Part One. Getting Started with Neural Networks
Chapter 1.  Learning Neural Network 
Chapter Goal: This chapter introduces you with the Artificial Intelligence Neural Networks
Sub-Topics
Biological and artificial neurons 
Activation functions 
Summary

Chapter 2.  Internal Mechanism of Neural Network Processing
Chapter Goal: The chapter explores the inner machinery of neural network processing
Sub-Topics
Function to be approximated
Network architecture 
Forward pass calculations 
Back-propagation pass calculations
Function derivative and function divergent 
Table of most commonly used function derivatives
Summary 

Chapter 3.  Manual Neural Network Processing 
Chapter Goal: Manual neural network processing
Sub-Topics
Example 1. Manual approximation of a function at a single point  
Building the neural network 
Forward pass calculation 
Backward pass calculation 
Calculating weight adjustments for the output layer neurons 
Calculating weight adjustments for the hidden layer neurons
Updating network biases 
Back to the forward pass
Matrix form of network calculation
Digging deeper 
Mini-batches and stochastic gradient 
Summary

Part Two. Neural Network Java Development Environment 
Chapter 4.  Configuring Your Development Environment 
Chapter Goal: Explain how to download and install a set of tools necessary for building, debugging, testing, and executing neural network applications.
Sub-Topics
Installing Java 8 environment on your Windows machine
Installing NetBeans IDE
Installing Encog Java framework 
Installing XChart Package 
Summary

Chapter 5.  Neural Network Development Using Java Encog
Framework 
Chapter Goal: Using Java Encog framework.
Sub-Topics
Example 2. Function approximation using Java environment
Network architecture 
Normalizing the input datasets 
Building the Java program that normalizes both datasets
Program code 
Debugging and executing the program 
Processing results for the training method 
Testing the network 
Testing results 
Digging deeper
Summary 

Chapter 6.  Neural Network Prediction Outside of the Training Range 
Chapter Goal:  Neural network is not a function extrapolation mechanism.
Sub-Topics
Example 3a. Approximating periodic functions outside of the training range
Network architecture for example 3a
Program code for example 3a
Testing the network
Example 3b. Correct way of approximating periodic functions outside of the training range
Preparing the training data
Network architecture for the example 3b
Program code for example 3b
Training results for example 3b
Testing results for example 3b 
Summary 

Chapter 7.  Processing Complex Periodic Functions
Chapter Goal: Approximation of the complex periodic function
Sub-Topics
Example 4. Approximation of a complex periodic function
Data preparation 
Reflecting function topology in data
Network architecture 
Program code
Testing the network 
Digging deeper
Summary 

Chapter 8.  Approximating Non-Continuous Functions 
Chapter Goal: This chapter introduced the micro-batch method that is able to approximate any non-continuous function with high precision results.
Sub-Topics
Example 5. Approximating non-continuous functions
Approximating non-continuous function using conventional network process . . . . . . .
Network architecture
Program code
Code fragments for the training process
Unsatisfactory training results
Approximating the non-continuous function using micro-bach method
Program code for micro-batch processing
Program Code for the getChart() method
Code fragment 1 of the training method
Code fragment 2 of the training method
Training results for micro-batch method
Test processing logic
Testing results for micro-batch method
Digging deeper
Summary 

Chapter 9. Approximation Continuous Functions with Complex Topology
Chapter Goal: Neural network has problem approximating continuous functions with complex topology. It is very difficult to obtain a good quality approximation for such functions. This chapter showed that the micro-batch method is able to approximate such functions with high precision results.
Sub-Topics
Example 5a. Approximation of continuous function with complex topology 
Network architecture for example 5a
Program code for example 5a
Training processing results for example 5a
Approximation of continuous function with complex topology using  micro-batch method 
Program code for example 5a using micro-batch method
Example 5b. Approximation of spiral-like functions 
Network architecture for example 5b
Program Code for example 5b
Approximation of the same functions using micro-batch method
Summary 

Chapter 10.  Using Neural Network for Classification of Objects
Chapter Goal: Show how to use neural networks for classification of objects
Sub-Topics
Example 6. Classification of records 
Training dataset 
Network architecture 
Testing dataset 
Program code for data normalization
Program code for classification 
Training results
Testing results 
Summary 

Chapter 11.  Importance of Selecting the Correct Model
Chapter Goal: Explained the importance of selecting a correct working model
Sub-Topics
Example 7.  Predicting next month stock market price   
Data preparation
Including function topology in the dataset 
Building micro-batch files
Network architecture
Program code 
Training process 
Training results
Testing process
Test processing logic
Testing results
Analyzing testing results 
Summary 

Chapter 12. Approximation of Functions in 3-D Space
Chapter Goal: Using neuron network for approximation of functions in 3-D space.
Sub-Topics
Example 8.  Approximation of functions in 3-D space 
Data preparation 
Network architecture
Program code 
Processing results 
Summary

Part Three. Introduction to Computer Vision 
Chapter 13.  Image Recognition 
Chapter Goal: introduction to the computer vision - the branch of Artificial Intelligence
Sub-Topics
Classification of handwritten digits
Input data preparation
Input data conversion
Building the conversion program
Summary 

Chapter 14.  Classification of Handwritten Digits
Chapter Goal: Developed a program able to recognize (classify) handwritten digits
Sub-Topics
Network architecture
Program code
Programming logic
Execution
Summary 



Igor Livshin is a senior specialist at Dev Technologies Corp, specializing in developing neural network applications. He worked previously as a senior J2EE architect at two large insurance companies: Continental Insurance and Blue Cross & Blue Shield of Illinois, developing large-scale enterprise applications. Igor published his first book, WebSphere Studio Application Developer 5.0 (Apress), in 2003. He has a master’s degree in computer science from the Institute of Technology in Odessa, Russia/Ukraine.


Develop neural network applications using the Java environment. After learning the rules involved in neural network processing, this second edition shows you how to manually process your first neural network example. The book covers the internals of front and back propagation and helps you understand the main principles of neural network processing. You also will learn  how to prepare the data to be used in neural network development and you will be able to suggest various techniques of data preparation for many unconventional tasks. 

This book discusses the practical aspects of using Java for neural network processing. You will know how to use the Encog Java framework for processing large-scale neural network applications. Also covered is the use of neural networks for approximation of non-continuous functions. In addition to using neural networks for regression, this second edition shows you how to use neural networks for computer vision. It focuses on image recognition such as the classification of handwritten digits, input data preparation and conversion, and building the conversion program. And you will learn about topics related to the classification of handwritten digits such as network architecture, program code, programming logic, and execution. 

The step-by-step approach taken in the book includes plenty of examples, diagrams, and screenshots to help you grasp the concepts quickly and easily.

What You Will Learn
  • Use Java for the development of neural network applications
  • Prepare data for many different tasks
  • Carry out some unusual neural network processing
  • Use a neural network to process non-continuous functions
  • Develop a program that recognizes handwritten digits



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia