1. Advances in AI, neural networks, and brain computing: An introduction PART 1 Fundamentals of neural networks and brain computing 2. Nature's learning rule: The Hebbian-LMS algorithm 3. A half century of progress toward a unified neural theory of mind and brain with applications to autonomous adaptive agents and mental disorders 4. Meaning versus information, prediction versus memory, and question versus answer 5. The brain-mind-computer trichotomy: Hermeneutic approach PART 2 Brain-inspired AI systems 6. The new AI: Basic concepts, and urgent risks and opportunities in the internet of things 7. Computers versus brains: Challenges of sustainable artificial and biological intelligence 8. Brain-inspired evolving and spiking connectionist systems for life-long and developmental learning 9. Pitfalls and opportunities in the development and evaluation of artificial intelligence systems 10. Theory of the brain and mind visions and history 11. From synapses to ephapsis: Embodied cognition and wearable personal assistants PART 3 Cutting-edge developments in deep learning and intelligent systems 12. Explainable deep learning to information extraction in diagnostics and electrophysiological multivariate time series 13. Computational intelligence in the time of cyber-physical systems and the Internet of Things 14. Evolving deep neural networks 15. Evolving GAN formulations for higher-quality image synthesis 16. Multiview learning in biomedical applications 17. Emergence of tool construction and tool use through hierarchical reinforcement learning 18. A Lagrangian framework for learning in graph neural networks