• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Architecture of Advanced Numerical Analysis Systems: Designing a Scientific Computing System Using Ocaml » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2949965]
• Literatura piękna
 [1857847]

  więcej...
• Turystyka
 [70818]
• Informatyka
 [151303]
• Komiksy
 [35733]
• Encyklopedie
 [23180]
• Dziecięca
 [617748]
• Hobby
 [139972]
• AudioBooki
 [1650]
• Literatura faktu
 [228361]
• Muzyka CD
 [398]
• Słowniki
 [2862]
• Inne
 [444732]
• Kalendarze
 [1620]
• Podręczniki
 [167233]
• Poradniki
 [482388]
• Religia
 [509867]
• Czasopisma
 [533]
• Sport
 [61361]
• Sztuka
 [243125]
• CD, DVD, Video
 [3451]
• Technologie
 [219309]
• Zdrowie
 [101347]
• Książkowe Klimaty
 [123]
• Zabawki
 [2362]
• Puzzle, gry
 [3791]
• Literatura w języku ukraińskim
 [253]
• Art. papiernicze i szkolne
 [7933]
Kategorie szczegółowe BISAC

Architecture of Advanced Numerical Analysis Systems: Designing a Scientific Computing System Using Ocaml

ISBN-13: 9781484288528 / Angielski / Miękka / 2022 / 290 str.

Jianxin Zhao
Architecture of Advanced Numerical Analysis Systems: Designing a Scientific Computing System Using Ocaml Wang, Liang 9781484288528 APress - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Architecture of Advanced Numerical Analysis Systems: Designing a Scientific Computing System Using Ocaml

ISBN-13: 9781484288528 / Angielski / Miękka / 2022 / 290 str.

Jianxin Zhao
cena 191,06
(netto: 181,96 VAT:  5%)

Najniższa cena z 30 dni: 191,06
Termin realizacji zamówienia:
ok. 16-18 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!
Kategorie:
Informatyka
Kategorie BISAC:
Computers > Computer Science
Computers > Information Theory
Computers > Artificial Intelligence - General
Wydawca:
APress
Język:
Angielski
ISBN-13:
9781484288528
Rok wydania:
2022
Ilość stron:
290
Wymiary:
25.4 x 17.8
Oprawa:
Miękka
Dodatkowe informacje:
Wydanie ilustrowane

Prologue
A Brief History
Reductionism vs. Holism
Key Features
Contact Me
PART 1: NUMERICAL TECHNIQUES
1. Introduction
What Is Scientific Computing
What is Functional Programming
Who Is This Book For
Structure of the Book
Installation
Option 1: Install from OPAM
Option 2: Pull from Docker Hub
Option 3: Pin the Dev-Repo
Option 4: Compile from Source
CBLAS/LAPACKE Dependency
Interacting with Owl
Using Toplevel
Using Notebook
Using Owl-Jupyter
Summary
2. Conventions
Pure vs. Impure
Ndarray vs. Scalar
Infix Operators
Operator Extension
Module Structures
Number and Precision
Polymorphic Functions
Module Shortcuts
Type Casting
3. Visualisation
Create Plots
Specification
Subplots
Multiple Lines
Legend
Drawing Patterns
Line Plot
Scatter Plot
Stairs Plot
Box Plot
Stem Plot
Area Plot
Histogram & CDF Plot
Log Plot
3D Plot
Advanced Statistical Plot
Summary
References
4. Mathematical Functions
Basic Functions
Basic Unary Math Functions
Basic Binary Functions
Exponential and Logarithmic Functions
Trigonometric Functions
Other Math Functions
Special Functions
Airy Functions
Bessel Functions
Elliptic Functions
Gamma Functions
Beta Functions
Struve Functions
Zeta Functions
Error Functions
Integral Functions
Factorials
Interpolation and Extrapolation
Integration
Utility Functions
Summary
5. Statistical Functions
Random Variables
Discrete Random Variables
Continuous Random Variables
Descriptive Statistics
Order Statistics
Special Distribution
Gamma Distribution
Beta Distribution
Chi-Square Distribution
Student-t Distribution
Cauchy Distribution
Multiple Variables
Sampling
Hypothesis Tests
Theory
Gaussian Distribution in Hypothesis Testing
Two-Sample Inferences
Goodness-of-fit Tests
Non-parametric Statistics
Covariance and Correlations
Analysis of Variance
Summary
6. N-Dimensional Arrays
Ndarray Types
Creation Functions
Properties Functions
Map Functions
Fold Functions
Scan Functions
Comparison Functions
Vectorised Functions
Iteration Functions
Manipulation Functions
Serialisation
Tensors
Summary
References
7. Slicing and Broadcasting
Slicing
Basic Slicing
Fancy Slicing
Conventions in Definition
Extended Operators
Advanced Usage
Broadcasting
What Is Broadcasting?
Shape Constraints
Supported Operations
Slicing in NumPy and Julia
Internal Mechanism
Summary
8. Linear Algebra
Vectors and Matrices
Creating Matrices
Accessing Elements
Iterate, Map, Fold, and Filter
Math Operations
Gaussian Elimination
LU Factorisation
Inverse and Transpose
Vector Spaces
Rank and Basis
Orthogonality
Solving Ax = b
Matrix Sensitivity
Determinants
Eigenvalues and Eigenvectors
Solving 
A
x
=
λ
 
x
Complex Matrices
Similarity Transformation and Diagonalisation
Positive Definite Matrices
Positive Definiteness
Singular Value Decomposition
Internal: CBLAS and LAPACKE
Low-level Interface to CBLAS & LAPACKE
Sparse Matrices
Summary
References
9. Ordinary Differential Equations
What Is An ODE
Exact Solutions
Linear Systems
Solving An ODE Numerically
Owl-ODE
Example: Linear Oscillator System
Solver Structure
Symplectic Solvers
Features and Limits
Examples of using Owl-ODE
Explicit ODE
Two Body Problem
Lorenz Attractor
Damped Oscillation
Stiffness
Solve Non-Stiff ODEs
Solve Stiff ODEs
Summary
References
10. Signal Processing
Discrete Fourier Transform
Fast Fourier Transform
Examples
Applications of FFT
Find period of sunspots
Decipher the Tone
Image Processing
Filtering
Example: Smoothing
Gaussian Filter
Signal Convolution
FFT and Image Convolution
Summary
References
11. Algorithmic Differentiation
Chain Rule
Differentiation Methods
How Algorithmic Differentiation Works
Forward Mode
Reverse Mode
Forward or Reverse?
A Strawman AD Engine
Simple Forward Implementation
Simple Reverse Implementation
Unified Implementations
Forward and Reverse Propagation API
Expressing Computation
Example: Forward Mode
Example: Reverse Mode
High-Level APIs
Derivative and Gradient
Jacobian
Hessian and Laplacian
Other APIs
Internal of Algorithmic Differentiation
Go Beyond Simple Implementation
Extend AD module
Lazy Evaluation
Summary
References
12. Optimisation
Introduction
Root Finding
Univariate Function Optimisation
Use Derivatives
Golden Section Search
Multivariate Function Optimisation
Nelder-Mead Simplex Method
Gradient Descent Methods
Conjugate Gradient Method
Newton and Quasi-Newton Methods
Global Optimisation and Constrained Optimisation
Summary
References
13. Regression
Linear Regression
Problem: Where to locate a new McDonald’s restaurant?
Cost Function
Solving Problem with Gradient Descent
Multiple Regression
Feature Normalisation
Analytical Solution
Non-linear regressions
Regularisation
Ols, Ridge, Lasso, and Elastic_net
Logistic Regression
Sigmoid Function
Cost Function
Example
Multi-class classification
Support Vector Machine
Kernel and Non-linear Boundary
Example
Model error and selection
Error Metrics
Model Selection
Summary
References
14. Deep Neural Networks
Perceptron
Yet Another Regression
Model Representation
Forward Propagation
Back propagation
Feed Forward Network
Layers
Activation Functions
Initialisation
Training
Test
Neural Network Module
Module Structure
Neurons
Neural Graph
Training Parameters
Convolutional Neural Network
Recurrent Neural Network
Long Short Term Memory (LSTM)
Generative Adversarial Network
Summary
References
15. Natural Language Processing
Introduction
Text Corpus
Step-by-step Operation
Use the Corpus Module
Vector Space Models
Bag of Words (BOW)
Term Frequency–Inverse Document Frequency (TF-IDF)
Latent Dirichlet Allocation (LDA)
Models
Dirichlet Distribution
Gibbs Sampling
Topic Modelling Example
Latent Semantic Analysis (LSA)
Search Relevant Documents
Euclidean and Cosine Similarity
Linear Searching
Summary
References
16. Dataframe for Tabular Data
Basic Concepts
Create Frames
Manipulate Frames
Query Frames
Iterate, Map, and Filter
Read/Write CSV Files
Infer Type and Separator
Summary
17. Symbolic Representation
Introduction
Design
Core abstraction
Engines
ONNX Engine
Example 1: Basic operations
Example 2: Variable Initialisation
Example 3: Neural network
LaTeX Engine
Owl Engine
Summary
18. Probabilistic Programming
Generative Model vs Discriminative Model
Bayesian Networks
Sampling Techniques
Inference
PART 2: SYSTEM ARCHITECTURE
19. Architecture Overview
Introduction
Architecture Overview
Core Implementation
N-dimensional Array
Interfaced Libraries
Advanced Functionality
Computation Graph
Algorithmic Differentiation
Regression
Neural Network
Parallel Computing
Actor Engine
GPU Computing
OpenMP
Community-Driven R&D
Summary
20. Core Optimisation
Background
Numerical Libraries
Optimisation of Numerical Computation
Interfacing to C Code
Ndarray Operations
From OCaml to C
Optimisation Techniques
Map Operations
Convolution Operations
Reduction Operations
Repeat Operations
Summary
References
21. Automatic Empirical Tuning
What is Parameter Tuning
Why Parameter Tuning in Owl
How to Tune OpenMP Parameters
Make a Difference
Summary
22. Computation Graph
Introduction
What is a Computation Graph?
From Dynamic to Static
Significance in Computing
Examples
Example 01: Basic CGraph
Example 02: CGraph with AD
Example 03: CGraph with DNN
Design Rationale
Optimisation of CGraph
Optimising memory with pebbles
Allocation Algorithm
As Intermediate Representations
Summary
23. Scripting and Zoo System
Introduction
Share Script with Zoo
Typical Scenario
Create a Script
Share via Gist
Import in Another Script
Select a Specific Version
Command Line Tool
More Examples
System Design
Services
Type Checking
Backend
Domain Specific Language
Service Discovery
Use Case
Summary
References
24. Compiler Backends
Base Library
Backend: JavaScript
Use Native OCaml
Use Facebook Reason
Backend: MirageOS
MirageOS and Unikernel
Example: Gradient Descent
Example: Neural Network
Evaluation
Summary
25. Distributed Computing
Actor System
Design
Actor Engines
Map-Reduce Engine
Parameter Server Engine
Peer-to-Peer Engine
Classic Synchronise Parallel
Bulk Synchronous Parallel
Asynchronous Parallel
Stale Synchronous Parallel
Probabilistic Synchronise Parallel
Basic idea: sampling
Compatibility
Barrier Trade-off Dimensions
Convergence
A Distributed Training Example
Step Progress
Accuracy
Summary
References
26. Testing Framework
Unit Test
Example
What Could Go Wrong
Corner Cases
Test Coverage
Use Functor
Summary
27. Constants and Metric System
What Is a Metric System
Four Metric Systems
SI Prefix
Example: Physics and Math constants
International System of Units
Time
Length
Area
Volume
Speed
Mass
Force
Energy
Power
Pressure
Viscosity
Luminance
Radioactivity
28. Internal Utility Modules
Dataset Module
MNIST
CIFAR-10
Graph Module
Stack and Heap Modules
Count-Min Sketch
Summary
PART 3: CASE STUDIES
29. Case - Image Recognition
Background
LeNet
AlexNet
VGG
ResNet
SqueezeNet
Capsule Network
Building InceptionV3 Network
InceptionV1 and InceptionV2
Factorisation
Grid Size Reduction
InceptionV3 Architecture
Preparing Weights
Processing Image
Running Inference
Applications
Summary
References
30. Case - Instance Segmentation
Introduction
Mask R-CNN Network
Building Mask R-CNN
Feature Extractor
Proposal Generation
Classification
Run the Code
Summary
References
31. Case - Neural Style Transfer
Content and Style
Content Reconstruction
Style Recreation
Combining Content and Style
Running NST
Extending NST
Fast Style Transfer
Building FST Network
Running FST
Summary
References
32. Case - Recommender System
Introduction
Architecture
Build Topic Models
Index Text Corpus
Random Projection
Optimising Vector Storage
Optimise Data Structure
Optimise Index Algorithm
Search Articles
Code Implementation
Make It Live
Summary
References
33. Case - Applications in Finance
Introduction
Bond Pricing
Black-Scholes Model
Mathematical Model
Option Pricing
Portfolio Optimisation
Mathematical Model
Efficient Frontier
Maximise Sharpe Ratio

Liang Wang is the Chief AI Architect at Nokia, the Chief Scientific Officer at iKVA, a Senior Researcher at the University of Cambridge, and an Intel Software Innovator. He has a broad research interest in artificial intelligence, machine learning, operating systems, computer networks, optimization theory, and graph theory.

Jianxin Zhao is a PhD graduate from the University of Cambridge, supervised by Prof. Jon Crowcroft. His research interests include numerical computation, high-performance computing, machine learning, and their application in the real world.

This unique open access book applies the functional OCaml programming language to numerical or computational weighted data science, engineering, and scientific applications. This book is based on the authors' first-hand experience building and maintaining Owl, an OCaml-based numerical computing library. 

You'll first learn the various components in a modern numerical computation library. Then, you will learn how these components are designed and built up and how to optimize their performance. After reading and using this book, you'll have the knowledge required to design and build real-world complex systems that effectively leverage the advantages of the OCaml functional programming language.

You will:

  • Optimize core operations based on N-dimensional arrays
  • Design and implement an industry-level algorithmic differentiation module
  • Implement mathematical optimization, regression, and deep neural network functionalities based on algorithmic differentiation
  • Design and optimize a computation graph module, and understand the benefits it brings to the numerical computing library
  • Accommodate the growing number of hardware accelerators (e.g. GPU, TPU) and execution backends (e.g. web browser, unikernel) of numerical computation
  • Use the Zoo system for efficient scripting, code sharing, service deployment, and composition
  • Design and implement a distributed computing engine to work with a numerical computing library, providing convenient APIs and high performance



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia