• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Applied Logistic Regression » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946600]
• Literatura piękna
 [1856966]

  więcej...
• Turystyka
 [72221]
• Informatyka
 [151456]
• Komiksy
 [35826]
• Encyklopedie
 [23190]
• Dziecięca
 [619653]
• Hobby
 [140543]
• AudioBooki
 [1577]
• Literatura faktu
 [228355]
• Muzyka CD
 [410]
• Słowniki
 [2874]
• Inne
 [445822]
• Kalendarze
 [1744]
• Podręczniki
 [167141]
• Poradniki
 [482898]
• Religia
 [510455]
• Czasopisma
 [526]
• Sport
 [61590]
• Sztuka
 [243598]
• CD, DVD, Video
 [3423]
• Technologie
 [219201]
• Zdrowie
 [101638]
• Książkowe Klimaty
 [124]
• Zabawki
 [2473]
• Puzzle, gry
 [3898]
• Literatura w języku ukraińskim
 [254]
• Art. papiernicze i szkolne
 [8170]
Kategorie szczegółowe BISAC

Applied Logistic Regression

ISBN-13: 9780470582473 / Angielski / Twarda / 2013 / 528 str.

Jr. David W. Hosmer; Stanley Lemeshow; Rodney X. Sturdivant
Applied Logistic Regression Rodney X. (Center for Data Analysis and Statistics at the United States Military Academy in West Point, NY) Sturdivant 9780470582473 John Wiley & Sons Inc - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Applied Logistic Regression

ISBN-13: 9780470582473 / Angielski / Twarda / 2013 / 528 str.

Jr. David W. Hosmer; Stanley Lemeshow; Rodney X. Sturdivant
cena 614,63 zł
(netto: 585,36 VAT:  5%)

Najniższa cena z 30 dni: 609,59 zł
Termin realizacji zamówienia:
ok. 30 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!

A new edition of the definitive guide to logistic regression modeling for health science and other applications This thoroughly expanded Third Edition provides an easily accessible introduction to the logistic regression (LR) model and highlights the power of this model by examining the relationship between a dichotomous outcome and a set of covariables. Applied Logistic Regression, Third Edition emphasizes applications in the health sciences and handpicks topics that best suit the use of modern statistical software. The book provides readers with state-of-the-art techniques for building, interpreting, and assessing the performance of LR models. New and updated features include:

  • A chapter on the analysis of correlated outcome data
  • A wealth of additional material for topics ranging from Bayesian methods to assessing model fit
  • Rich data sets from real-world studies that demonstrate each method under discussion
  • Detailed examples and interpretation of the presented results as well as exercises throughout
Applied Logistic Regression, Third Edition is a must-have guide for professionals and researchers who need to model nominal or ordinal scaled outcome variables in public health, medicine, and the social sciences as well as a wide range of other fields and disciplines.

This new edition provides a focused introduction to the LR model and its use in methods for modeling the relationship between a dichotomous outcome variable and a set of covariables.

Kategorie:
Nauka, Matematyka
Kategorie BISAC:
Mathematics > Probability & Statistics - Regression Analysis
Medical > Zdrowie publiczne
Medical > Biostatistics
Wydawca:
John Wiley & Sons Inc
Seria wydawnicza:
Wiley Series in Probability and Statistics
Język:
Angielski
ISBN-13:
9780470582473
Rok wydania:
2013
Ilość stron:
528
Waga:
0.85 kg
Wymiary:
23.88 x 16.0 x 3.3
Oprawa:
Twarda
Wolumenów:
01
Dodatkowe informacje:
Bibliografia
Wydanie ilustrowane

In conclusion, the index was mercifully complete, and all items searched for were found (nice cross–referencing too)  In summary:  Highly recommended.   (Scientific Computing, 1 May 2013)

Preface to the Third Edition xiii

1 Introduction to the Logistic Regression Model 1

1.1Introduction 1

1.2 Fitting the Logistic Regression Model 8

1.3 Testing for the Significance of the Coefficients 10

1.4 Confidence Interval Estimation 15

1.5 Other Estimation Methods 20

1.6 Data Sets Used in Examples and Exercises 22

1.6.1 The ICU Study 22

1.6.2 The Low Birth Weight Study 24

1.6.3 The Global Longitudinal Study of Osteoporosis in Women 24

1.6.4 The Adolescent Placement Study 26

1.6.5 The Burn Injury Study 27

1.6.6 The Myopia Study 29

1.6.7 The NHANES Study 31

1.6.8 The Polypharmacy Study 31

Exercises 32

2 The Multiple Logistic Regression Model 35

2.1 Introduction 35

2.2 The Multiple Logistic Regression Model 35

2.3 Fitting the Multiple Logistic Regression Model 37

2.4 Testing for the Significance of the Model 39

2.5 Confidence Interval Estimation 42

2.6 Other Estimation Methods 45

Exercises 46

3 Interpretation of the Fitted Logistic Regression Model 49

3.1 Introduction 49

3.2 Dichotomous Independent Variable 50

3.3 Polychotomous Independent Variable 56

3.4 Continuous Independent Variable 62

3.5 Multivariable Models 64

3.6 Presentation and Interpretation of the Fitted Values 77

3.7 A Comparison of Logistic Regression and Stratified Analysis for 2 × 2 Tables 82

Exercises 87

4 Model–Building Strategies and Methods for Logistic Regression 89

4.1 Introduction 89

4.2 Purposeful Selection of Covariates 89

4.2.1 Methods to Examine the Scale of a Continuous Covariate in the Logit 94

4.2.2 Examples of Purposeful Selection 107

4.3 Other Methods for Selecting Covariates 124

4.3.1 Stepwise Selection of Covariates 125

4.3.2 Best Subsets Logistic Regression 133

4.3.3 Selecting Covariates and Checking their Scale Using Multivariable Fractional Polynomials 139

4.4 Numerical Problems 145

Exercises 150

5 Assessing the Fit of the Model 153

5.1 Introduction 153

5.2 Summary Measures of Goodness of Fit 154

5.2.1 Pearson Chi–Square Statistic Deviance and Sum–of–Squares 155

5.2.2 The Hosmer Lemeshow Tests 157

5.2.3 Classification Tables 169

5.2.4 Area Under the Receiver Operating Characteristic Curve 173

5.2.5 Other Summary Measures 182

5.3 Logistic Regression Diagnostics 186

5.4 Assessment of Fit via External Validation 202

5.5 Interpretation and Presentation of the Results from a Fitted Logistic Regression Model 212

Exercises 223

6 Application of Logistic Regression with Different Sampling Models 227

6.1 Introduction 227

6.2 Cohort Studies 227

6.3 Case–Control Studies 229

6.4 Fitting Logistic Regression Models to Data from Complex Sample Surveys 233

Exercises 242

7 Logistic Regression for Matched Case–Control Studies 243

7.1 Introduction 243

7.2 Methods For Assessment of Fit in a 1 M Matched Study 248

7.3 An Example Using the Logistic Regression Model in a 1 1 Matched Study 251

7.4 An Example Using the Logistic Regression Model in a 1 M Matched Study 260

Exercises 267

8 Logistic Regression Models for Multinomial and Ordinal Outcomes 269

8.1 The Multinomial Logistic Regression Model 269

8.1.1 Introduction to the Model and Estimation of Model Parameters 269

8.1.2 Interpreting and Assessing the Significance of the Estimated Coefficients 272

8.1.3 Model–Building Strategies for Multinomial Logistic Regression 278

8.1.4 Assessment of Fit and Diagnostic Statistics for the Multinomial Logistic Regression Model 283

8.2 Ordinal Logistic Regression Models 289

8.2.1 Introduction to the Models Methods for Fitting and Interpretation of Model Parameters 289

8.2.2 Model Building Strategies for Ordinal Logistic Regression Models 305

Exercises 310

9 Logistic Regression Models for the Analysis of Correlated Data 313

9.1 Introduction 313

9.2 Logistic Regression Models for the Analysis of Correlated Data 315

9.3 Estimation Methods for Correlated Data Logistic Regression Models 318

9.4 Interpretation of Coefficients from Logistic Regression Models for the Analysis of Correlated Data 323

9.4.1 Population Average Model 324

9.4.2 Cluster–Specific Model 326

9.4.3 Alternative Estimation Methods for the Cluster–Specific Model 333

9.4.4 Comparison of Population Average and Cluster–Specific Model 334

9.5 An Example of Logistic Regression Modeling with Correlated Data 337

9.5.1 Choice of Model for Correlated Data Analysis 338

9.5.2 Population Average Model 339

9.5.3 Cluster–Specific Model 344

9.5.4 Additional Points to Consider when Fitting Logistic Regression Models to Correlated Data 351

9.6 Assessment of Model Fit 354

9.6.1 Assessment of Population Average Model Fit 354

9.6.2 Assessment of Cluster–Specific Model Fit 365

9.6.3 Conclusions 374

Exercises 375

10 Special Topics 377

10.1 Introduction 377

10.2 Application of Propensity Score Methods in Logistic Regression Modeling 377

10.3 Exact Methods for Logistic Regression Models 387

10.4 Missing Data 395

10.5 Sample Size Issues when Fitting Logistic Regression Models 401

10.6 Bayesian Methods for Logistic Regression 408

10.6.1 The Bayesian Logistic Regression Model 410

10.6.2 MCMC Simulation 411

10.6.3 An Example of a Bayesian Analysis and Its Interpretation 419

10.7 Other Link Functions for Binary Regression Models 434

10.8 Mediation 441

10.8.1 Distinguishing Mediators from Confounders 441

10.8.2 Implications for the Interpretation of an Adjusted Logistic Regression Coefficient 443

10.8.3 Why Adjust for a Mediator? 444

10.8.4 Using Logistic Regression to Assess Mediation: Assumptions 445

10.9 More About Statistical Interaction 448

10.9.1 Additive versus Multiplicative Scale Risk Difference versus Odds Ratios 448

10.9.2 Estimating and Testing Additive Interaction 451

Exercises 456

References 459

Index 479

DAVID W. HOSMER, Jr., PhD, is Professor Emeritus of Biostatistics at the School of Public Health and Health Sciences at the University of Massachusetts Amherst.

STANLEY LEMESHOW, PhD, is Professor of Biostatistics and Founding Dean of the College of Public Health at The Ohio State University, Columbus, Ohio.

RODNEY X. STURDIVANT, PhD, is Associate Professor and Founding Director of the Center for Data Analysis and Statistics at the United States Military Academy at West Point, New York.

A new edition of the definitive guide to logistic regression modeling for health science and other applications

Praise for the Second Edition

". . . an excellent book that balances many objectives well. . . . Applied Logistic Regression is an ideal choice."
Technometrics

". . . it remains an extremely valuable text for everyone working or teaching in fields like epidemiology."
Statistics in Medicine

This thoroughly expanded Third Edition provides an easily accessible introduction to the logistic regression (LR) model and highlights the power of this model by examining the relationship between a dichotomous outcome and a set of covariables.

Applied Logistic Regression, Third Edition emphasizes applications in the health sciences and handpicks topics that best suit the use of modern statistical software. The book provides readers with state–of–the–art techniques for building, interpreting, and assessing the performance of LR models. New and updated features include:

  • A chapter on the analysis of correlated outcome data
  • A wealth of additional material for topics ranging from Bayesian methods to assessing model fit
  • Rich data sets from real–world studies that demonstrate each method under discussion
  • Detailed examples and interpretation of the presented results as well as exercises throughout

Applied Logistic Regression, Third Edition is a must–have guide for professionals and researchers who need to model nominal or ordinal scaled outcome variables in public health, medicine, and the social sciences as well as a wide range of other fields and disciplines.

Hosmer, David W., Jr. David W. Hosmer, PhD, is Professor Emeritus of Bio... więcej >
Lemeshow, Stanley PAUL S. LEVY is Professor of Epidemiology and Bios... więcej >


Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia