1. Vectors in Three-Dimensional Space.- 2. Vector Fields.- 3. Fundamental Equations for Fluid Mechanics.- 4. Integral Theorems.- 5. Coordinate Transformations; Definitions of Vectors and Tensors.- 6. Partial Differential Equations of the First Order.- 7. Partial Differential Equations of the Second Order.- 8. The Elliptic Case: Two Complex Characteristics.- 9. Applications of Complex Variables.- 10. The Parabolic Case: Two Coinciding Characteristics.- 11. The Hyperbolic Case: Two Real Characteristics.- 12. Hyperbolic Quasi Linear Partial Differential Equations.- 13. The Navier-Stokes Equations.- Appendix A. Numerical Integration of the Cauchy Integral.- Appendix B. List of Problems with Page Numbers.
Dr. Strack received his PhD from the Technical University of Delft, the Netherlands, in 1973. He joined the Department of Civil Engineering of the University of Minnesota in 1974, where he is currently a professor. Dr. Strack is the original developer of the Analytic Element Method, which is a popular method in groundwater modeling. He is the author of the textbook Groundwater Mechanics (Prentice-Hall, 1989) and the textbook Analytical Groundwater Mechanics (Cambridge University Press, 2017), and a chapter on basic groundwater flow equations in Wiley’s forthcoming Water Encyclopedia. He has authored 44 refereed papers in major journals, is the third recipient of the Lifetime Achievement Award, granted by the Minnesota Groundwater Association, and is a correspondent (foreign member) of the Royal Dutch Academy of Sciences. He is the author of the computer programs SLAEM and MLAEM, used for describing groundwater flow.
Professor Strack has taught groundwater flow and mathematics for engineers for over 45 years and has many years of experience as a consultant.
This textbook presents the application of mathematical methods and theorems to solve engineering problems, rather than focusing on mathematical proofs. Applications of Vector Analysis and Complex Variables in Engineering explains the mathematical principles in a manner suitable for engineering students, who generally think quite differently than students of mathematics. The objective is to emphasize mathematical methods and applications, rather than emphasizing general theorems and principles, for which the reader is referred to the literature.