ISBN-13: 9781119556633 / Angielski / Twarda / 2020 / 416 str.
ISBN-13: 9781119556633 / Angielski / Twarda / 2020 / 416 str.
List of Contributors xiiiPreface xvAbbreviations xix1 Introduction 1Yueping Zhang1.1 Background 11.2 The Idea 31.3 Exploring the Idea 41.3.1 Bluetooth Radio and Other RF Applications 41.3.2 60-GHz Radio and Other Millimeter-wave Applications 71.4 Developing the Idea into a Mainstream Technology 81.5 Concluding Remarks 11Acknowledgements 12References 122 Antennas 17Yueping Zhang2.1 Introduction 172.2 Basic Antennas 172.2.1 Dipole 172.2.2 Monopole 182.2.3 Loop 182.2.4 Slot 192.3 Unusual Antennas 192.3.1 Laminated Resonator Antenna 192.3.2 Dish-like Reflector Antenna 192.3.3 Slab Waveguide Antenna 202.3.4 Differentially Fed Aperture Antenna 202.3.5 Step-profiled Corrugated Horn Antenna 212.4 Microstrip Patch Antennas 212.4.1 Basic Patch Antennas 212.4.2 Stacked Patch Antennas 252.4.3 Patch Antenna Arrays 272.5 Microstrip Grid Array Antennas 302.5.1 Basic Configuration 312.5.2 Principle of Operation 312.5.3 Design Formulas with an Example 322.6 Yagi-Uda Antennas 372.6.1 Horizontal Yagi-Uda Antenna 382.6.2 Vertical Yagi-Uda Antenna 382.6.3 Yagi-Uda Antenna Array 392.7 Magneto-Electric Dipole Antennas 412.7.1 Single-polarized Microstrip Magneto-electric Dipole Antenna 422.7.2 Dual-polarized Microstrip Magneto-electric Dipole Antenna 422.7.3 Simulated and Measured Results 452.8 Performance Improvement Techniques 452.8.1 Single-layer Spiral AMC 492.8.2 Design Guidelines 492.8.3 A Design Example 502.9 Summary 50Acknowledgements 50References 513 Packaging Technologies 57Ning Ye3.1 Introduction 573.2 Major Packaging Milestones 573.3 Packaging Taxonomy 583.3.1 Routing Layer in Packages 583.3.1.1 Lead Frame 583.3.1.2 Laminate 593.3.1.3 Redistribution Layer 613.3.2 Die to Routing Layer Interconnect 623.3.2.1 Wire Bonds 623.3.2.2 Flip Chips 633.4 Packaging Process for Several Major Packages 643.4.1 Wire Bond Plastic Ball Grid Array 643.4.1.1 Die Preparation 663.4.1.2 Die Attach 663.4.1.3 Wire Bonding 673.4.1.4 Molding 693.4.1.5 Ball Mounting 713.4.1.6 Package Singulation 713.4.2 Wire Bond Quad Flat No-Lead Packages 713.4.3 Flip-chip Plastic Ball Grid Arrays 733.4.3.1 Flip-chip Bumping 733.4.3.2 Flip-chip Attach 753.4.3.3 Underfill 763.4.4 Wafer Level Packaging 773.4.5 Fan Out Wafer Level Packaging 783.5 Summary and Emerging Trends 79References 844 Electrical, Mechanical, and Thermal Co-Design 89Xiaoxiong Gu and Pritish Parida4.1 Introduction 894.2 Electrical, Warpage, and Thermomechanical Analysis for AiP Co-design 924.2.1 28-GHz Phased Array Antenna Module Overview 924.2.2 Thermomechanical Test Vehicle Overview 944.2.3 Antenna Prototyping and Interconnect Characterization 964.2.4 Warpage Analysis and Test 964.2.5 Thermal Simulation and Characterization 984.3 Thermal Management Considerations for Next-generation Heterogeneous Integrated Systems 1024.3.1 AiP Cooling Options Under Different Power Dissipation Conditions 1024.3.2 Thermal Management for Heterogeneous Integrated High-power Systems 108Acknowledgment 110References 1105 Antenna-in-Package Measurements 115A.C.F. Reniers, U. Johannsen, and A.B. Smolders5.1 General Introduction and Antenna Parameters 1155.1.1 Antenna Measurement Concepts 1155.1.2 Field Regions 1165.1.3 Radiation Characteristics 1185.1.4 Polarization Properties of Antennas 1205.2 Impedance Measurements 1235.2.1 Circuit Representation of Antennas 1235.3 Anechoic Measurement Facility for Characterizing AiPs 1285.3.1 Design of the mmWave Anechoic Chamber 1285.3.2 Defining Antenna Measurement Uncertainty 1295.3.3 Uncertainty in the mmWave Antenna Test Facility 1325.3.4 Case Study AiP: Characterization of a mmWave Circularly Polarized Rod Antenna 1325.4 Over-the-air System-level Testing 1395.5 Summary and Conclusions 142References 1426 Antenna-in-package Designs in Multilayered Low-temperature Co-fired Ceramic Platforms 147Atif Shamim and Haoran Zhang6.1 Introduction 1476.2 LTCC Technology 1486.2.1 Introduction 1496.2.2 LTCC Fabrication Process 1506.2.3 LTCC Material Suppliers and Manufacturing Foundries 1516.3 LTCC-based AiP 1536.3.1 SIW AiP 1536.3.2 mmWave AiP 1566.3.2.1 5G AiP 1576.3.2.2 WPAN (60-GHz) AiP 1586.3.2.3 Automotive Radar (79-GHz) AiP 1596.3.2.4 Imaging and Radar (94-GHz) AiP 1606.3.2.5 Sub-THz (Above-100-GHz) AiP 1616.3.3 Active Antenna in LTCC 1626.3.4 Gain Enhancement Techniques in LTCC 1646.3.5 Ferrite LTCC-based Antenna 1676.4 Challenges and Upcoming Trends in LTCC AiP 171References 1727 Antenna Integration in Packaging Technology operating from 60 GHz up to 300 GHz (HDI-based AiP) 179Frédéric Gianesello, Diane Titz, and Cyril Luxey7.1 Organic Packaging Technology for AiP 1797.1.1 Organic Package Overview 1797.1.2 Buildup Architecture 1807.1.3 Industrial Material 1827.1.4 HDI Design Rules 1837.1.5 Assembly Constraints and Body Size 1857.2 Integration of AiP in Organic Packaging Technology Below 100 GHz 1877.2.1 Integration Strategy of the Antenna 1877.2.2 60-GHz AiP Modules 1897.2.3 94-GHz AiP Module 1977.3 Integration of AiP in Organic Packaging Technology in the 120-140-GHz Band 2037.3.1 120-140-GHz AiP Module 2037.3.2 Link Demonstration Using a BiCMOS Chip with the 120-GHz BGA Module 2087.4 Integration of AiP in Organic Packaging Technology Beyond 200 GHz 2107.5 Conclusion and Perspectives 214References 2158 Antenna Integration in eWLB Package 219Maciej Wojnowski and Klaus Pressel8.1 Introduction 2198.2 The Embedded Wafer Level BGA Package 2208.2.1 Process Flow for the eWLB 2228.2.2 Vertical Interconnections in the eWLB 2238.2.3 Embedded Z-Line Technology 2258.3 Toolbox Elements for AiP in eWLB 2278.3.1 Transmission Lines 2278.3.2 Passive Components and Distributed RF Circuits 2318.3.3 RF Transition to PCB 2388.3.4 Vertical RF Transitions 2398.4 Antenna Integration in eWLB 2438.4.1 Single Antenna 2448.4.2 Antenna Array 2458.4.3 3D Antenna and Antenna Arrays 2468.5 Application Examples 2498.5.1 Two-channel 60-GHz Transceiver Module 2498.5.2 Four-channel 77-GHz Transceiver Module 2538.5.3 Six-channel 60-GHz Transceiver Module 2588.6 Conclusion 263Acknowledgement 263References 2649 Additive Manufacturing AiP Designs and Applications 267Tong-Hong Lin, Ryan A. Bahr, and Manos M. Tentzeris9.1 Introduction 2679.2 Additive Manufacturing Technologies 2699.2.1 Inkjet Printing 2699.2.2 FDM 3D Printing 2699.2.3 SLA 3D Printing 2709.3 Material Characterization 2729.3.1 Resonator-based Material Characterization 2739.3.2 Transmissive-based Material Characterization 2749.4 Recent Advances in AM for Packaging 2759.4.1 Interconnects 2769.4.2 AiP 2779.5 Fabrication Process 2789.5.1 3D Printing Process 2789.5.2 Inkjet Printing Process 2809.5.3 AiP Fabrication Process 2819.6 AiP and SoP using AM Technologies 2829.6.1 AiP Design 2829.6.2 SoP Design 2849.7 Summary and Prospect 287References 28910 SLC-based AiP for Phased Array Applications 293Duixian Liu and Xiaoxiong Gu10.1 Introduction 29310.2 SLC Technology 29610.3 AiP for 5G Base Station Applications 29710.3.1 Package and Antenna Structure 29810.3.2 AiP Design Considerations 29910.3.2.1 Surface Wave Effects 29910.3.2.2 Vertical Transitions 30010.3.3 Aperture-coupled Patch Antenna Design 30210.3.4 28-GHz Aperture-coupled Cavity-backed Patch Array Design 30710.3.5 Passive Antenna Element Characterization 30910.3.6 Active Module Characterization of 64-element Beams 31010.3.7 28-GHz AiP Phased-array Conclusion 31410.4 94-GHz Scalable AiP Phased-array Applications 31510.4.1 Scalable Phased-array Concept 31710.4.2 94-GHz Antenna Prototype Designs 32010.4.3 94-GHz Antenna Prototype Evaluation 32210.4.4 94-GHz AiP Array Design 32210.4.5 Package Modeling and Simulation 32610.4.6 Package Assembly and Test 32810.4.7 Antenna Pattern and Radiated Power Measurement 330Acknowledgment 333References 33411 3D AiP for Power Transfer, Sensor Nodes, and IoT Applications 341Amin Enayati, Karim Mohammadpour-Aghdam, and Farbod Molaee-Ghaleh11.1 Introduction 34111.2 Small Antenna Design and Miniaturization Techniques 34211.2.1 Physical Bounds on the Radiation Q-factor for Antenna Structures 34211.2.1.1 Lower Bounds on Antenna Enclosed in a Sphere: Chu, McLean, and Thal Limits 34211.2.1.2 Lower Bounds on Antenna Enclosed in an Arbitrary Structure: Gustafsson-Yaghjian Limit 34311.2.2 Figure of Merit for Antenna Miniaturization 34511.2.2.1 Relation between Q-factor and Antenna Input Impedance 34511.2.2.2 Antenna Efficiency Effect on the Radiation Q 34611.2.2.3 Cross-polarization Effect on Antenna Radiation Q 34611.2.2.4 Figure of Merit Definition 34611.2.3 Antenna Miniaturization Techniques 34611.2.3.1 Miniaturization through Geometrical Shaping of the Antenna 34711.2.3.2 Miniaturization through Material Loading 34911.3 Multi-mode Capability: A Way to Achieve Wideband Antennas 35411.4 Miniaturized Antenna Solutions for Power Transfer and Energy Harvesting Applications 35511.4.1 Integrated Antenna Design Challenges for WPT and Scavenging Systems 35611.4.1.1 Conjugate Impedance Matching 35611.4.1.2 Antenna Structure Selection 35711.4.2 Small Antenna Structure that can be Optimized for Arbitrary Input Impedance 35711.4.2.1 Basic Antenna Structure 35711.4.2.2 Antenna Size Reduction by Folding 35811.4.2.3 Final Antenna Structure and Parameter Analysis 35811.4.3 Example of an AiP Solution for On-chip Scavenging/UWB Applications 36011.5 AiP Solutions in Low-cost PCB Technology 36411.5.1 Introduction to Wireless Sensor Networks and IoT 36411.5.1.1 Examples of Antennas for IoT Devices 36511.5.2 3D System-in-Package Solutions for Microwave Wireless Devices 36511.5.3 E-CUBE: A 3D SiP Solution 36811.5.3.1 Multilayer Flex-rigid PCB for Antenna Element Design 36911.5.3.2 Modular Design of the Antenna Array and Power Distribution Network 37111.5.3.3 Construction and Measurement Results 374References 377Index 385
DUIXIAN LIU, PHD, is a researcher and master inventorat IBM at Thomas J. Watson Research Center. He is a co-editor of the Wiley title Advanced Millimeter-wave Technologies: Antennas, Packaging and Circuits and Springer title Handbook of Antenna Technologies. He served as an Associate Editor of the IEEE Transactions on Antennas and Propagation for nine years and a Guest Editor for the IEEE Transactions on Antennas and Propagation onfour Special Issues related to mm-wave antenna designs. He received the prestigious IEEE AP-S Sergei A. Schelkunoff Prize Paper Award in 2012. He is a Fellow of IEEE.YUEPING ZHANG, PhD, is a Professor of Electronic Engineering at Nanyang Technological University and a Distinguished Lecturer of the IEEE Antennas and Propagation Society (IEEE AP-S). He served as an Associate Editor of the IEEE Transactions on Antennas and Propagation. He received the prestigious IEEE AP-S Sergei A. Schelkunoff Prize Paper Award in 2012. He is a Fellow of IEEE.
1997-2025 DolnySlask.com Agencja Internetowa