• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Anisotropic Elasticity with MATLAB » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2949965]
• Literatura piękna
 [1857847]

  więcej...
• Turystyka
 [70818]
• Informatyka
 [151303]
• Komiksy
 [35733]
• Encyklopedie
 [23180]
• Dziecięca
 [617748]
• Hobby
 [139972]
• AudioBooki
 [1650]
• Literatura faktu
 [228361]
• Muzyka CD
 [398]
• Słowniki
 [2862]
• Inne
 [444732]
• Kalendarze
 [1620]
• Podręczniki
 [167233]
• Poradniki
 [482388]
• Religia
 [509867]
• Czasopisma
 [533]
• Sport
 [61361]
• Sztuka
 [243125]
• CD, DVD, Video
 [3451]
• Technologie
 [219309]
• Zdrowie
 [101347]
• Książkowe Klimaty
 [123]
• Zabawki
 [2362]
• Puzzle, gry
 [3791]
• Literatura w języku ukraińskim
 [253]
• Art. papiernicze i szkolne
 [7933]
Kategorie szczegółowe BISAC

Anisotropic Elasticity with MATLAB

ISBN-13: 9783030666750 / Angielski / Twarda / 2021 / 908 str.

Chyanbin Hwu
Anisotropic Elasticity with MATLAB Chyanbin Hwu 9783030666750 Springer - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Anisotropic Elasticity with MATLAB

ISBN-13: 9783030666750 / Angielski / Twarda / 2021 / 908 str.

Chyanbin Hwu
cena 1129,80 zł
(netto: 1076,00 VAT:  5%)

Najniższa cena z 30 dni: 963,86 zł
Termin realizacji zamówienia:
ok. 22 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!
inne wydania
Kategorie:
Technologie
Kategorie BISAC:
Science > Mechanics - Solids
Wydawca:
Springer
Seria wydawnicza:
Solid Mechanics and Its Applications
Język:
Angielski
ISBN-13:
9783030666750
Rok wydania:
2021
Wydanie:
2021
Numer serii:
000074400
Ilość stron:
908
Waga:
2.25 kg
Wymiary:
28.96 x 21.59 x 4.83
Oprawa:
Twarda
Wolumenów:
01

Chapter 1: Anisotropic Elasticity

1.1  Theory of Elasticity

1.2  Linear Anisotropic Elastic Materials

1.2.1 Three-Dimensional Constitutive Relations

1.2.2 Two-Dimensional Constitutive Relations

1.2.3 Laminate Constitutive Relations

1.3 Thermoelastic Problems

1.4 Piezoelectric Materials

 

Chapter 2: Complex Variable Formalism

2.1 Two-Dimensional Analysis

2.1.1 Lekhnitskii Formalism

2.1.2 Stroh Formalism

2.1.3 Extended Stroh Formalism for Thermoelastic Problems

2.1.4 Expanded Stroh Formalism for Piezoelectric Materials

2.2 Plate Bending Analysis

2.2.1 Lekhnitskii Bending Formalism

2.2.2 Stroh-Like Bending Formalism

2.3 Coupled Stretching-Bending Analysis

2.3.1 Stroh-Like Formalism

2.3.2 Extended Stroh-Like Formalism for Thermal Stresses in Laminates

2.3.3 Expanded Stroh-Like Formalism for Electro-Elastic Laminates

2.4 Explicit Expressions

2.4.1 Fundamental Matrix N

2.4.2 Material Eigenvector Matrices A and B

2.4.3 Barnett-Lothe Tensors S, H and L

2.5 General Remarks

2.5.1 Degeneracy of Material Eigenvectors

2.5.2 Units, Scaling Factors, and Dimensions

2.5.3 Sign Convention

2.5.4 Common Symbols

2.5.5 Extended Symbols

        

Chapter 3: Computer Program with Matlab

3.1 Program Structures

         3.1.1 Computational Procedure

         3.1.2 Control Parameters

         3.1.3 Global Variables

         3.1.4 Input

         3.1.5 Output

3.2 Main Program and Functions

        3.2.1 Main program

3.2.2 Function Description

3.3 Input and Calculation of Material Properties

        3.3.1 Function - elastic

        3.3.2 Function - thermal

        3.3.3 Function - piezoM

3.4 Calculation of Material Eigenvalues and Eigenvectors

3.4.1 Function - material_eigen

        3.4.2 Function - thermal_eigen

3.5 Calculation of Analytical Solutions

        3.5.1 Function - internal, positionTime

        3.5.2 Function - uphi_bank

3.6 Functions for Double Check

3.6.1 Function – piezo2, piezoM2

3.6.2 Function - fundamental_N

3.6.3 Function - eigen_muAB

3.6.4 Function – identities

3.7 Functions for Output

3.7.1 Function – output_caption

3.7.2 Function - printTF

3.7.3 Function – TableFig, TableFig3D

3.8 Examples

        3.8.1 Elastic Properties

        3.8.2 Thermal Properties

        3.8.3 Piezoelastic Properties

  Chapter 4: Infinite Space, Half Space and Bi-materials

4.1 Infinite Space

4.1.1 Uniform Load - s411infUL

4.1.2 Inplane Bending - s412infIB

4.1.3 Point Force - s413infPF

4.1.4 Point Moment - s414infPM

4.1.5 Dislocation - s415infDL

4.2 Half Space

4.2.1 Point Force - s421halfPF

4.2.2 Point Force on Surface - s422halfPFs

4.2.3 Distributed Load - s423halfDT

4.2.4 Point Moment - s424halfPM

4.2.5 Dislocation - s425halfDL

4.3 Bi-materials

4.3.1 Point Force and Dislocation - s431bimatPFD

4.3.2 Point Force and Dislocation on the Interface - s432bimatPFDi

4.4 Functions for Common Use

4.4.1 Function - Stroh_matrices

4.4.2 Function - Gauss

4.5 Examples

4.5.1 Infinite Space

4.5.2 Half Space

4.5.3 Bi-materials

 

Chapter 5: Wedges and Interface Corners

5.1 Uniform Tractions on the Wedge Sides

5.1.1 Non-Critical Wedge Angles

5.1.2 Critical Wedge Angles - s512wedgeUT

5.2 Forces at the Wedge Apex

5.2.1 A Single Wedge Under a Point Force - s521wedgePF

5.2.2 A Single Wedge Under a Point Moment - s522wedgePM

5.2.3 Multi-material Wedge Spaces - s523MwedgesPFD        

5.2.4 Multi-material Wedges - s524MwedgePF

5.3 Stress Singularities

5.3.1 Multi-Material Wedge Spaces

5.3.2 Multi-Material Wedges

5.3.3 Eigenfunctions - s533MwedgesSOE

5.4 Stress Intensity Factors of Interface Corners

5.4.1 Near Tip Solutions

5.4.2 A Unified Definition - s542MwedgeNTP

5.4.3 H-Integral for 2D Interface Corners - s543MwedgeSIF2d

5.4.4 H-Integral for 3D Interface Corners - s544MwedgeSIF3d

5.5 Functions for Common Use

5.5.1 Function - multiwedge

5.5.2 Function - muller

5.5.3 Function - s5_ut

5.5.4 Function – MLS

5.6 Examples

5.6.1 A Single Wedge

5.6.2 Multi-Material Wedges

5.6.3 Interface Corners

 

Chapter 6: Holes

6.1 Elliptical Holes

6.1.1 Uniform Loading - s611EholeUL

6.1.2 Inplane Bending - s612EholeIB

6.1.3 Arbitrary Loading - s613EholeAL

6.1.4 Point Force - s614EholePF

6.1.5 Dislocation - s615EholeDL

6.2 Polygon-like Holes

6.2.1 Transformation

6.2.2 Uniform Loading - s622PholeUL

6.2.3 In-plane Bending - s623PholeIB

6.3 Functions for Common Use

6.3.1 Function - mapEP

6.3.2 Function - logBranch

6.4 Examples

6.4.1 Elliptical Holes

6.4.2 Polygon-like Holes

 

Chapter 7: Cracks

7.1 Near Tip Solutions

7.1.1 Cracks in Homogeneous Materials - s711crackNTS

7.1.2 Interfacial Cracks - s712IFcrackNTS

7.1.3 Cracks Terminating at the Interfaces – s713crackTI

7.2 A Finite Straight Crack

          7.2.1 Uniform Load at Infinity - s721crackUL

          7.2.2 Inplane Bending at Infinity - s722crackIB

          7.2.3 Arbitrary Load on the Crack Surfaces - s723crackAL

          7.2.4 Point Force at Arbitrary Location - s724crackPF

          7.2.5 Dislocation at Arbitrary Location - s725crackDL

7.3 Collinear Cracks

          7.3.1 General Solutions

          7.3.2 Two Collinear Cracks - s732CO2crackUL

          7.3.3 Collinear Periodic Cracks - s733COPcrackUL

7.4 Collinear Interface Cracks

          7.4.1 General Solutions - s741IFcrack

          7.4.2 A Semi-infinite Interface Crack - s742SIFcrackPFs

          7.4.3 A Finite Interface Crack - s7431IFcrackPFs, s7432IFcrackUL

          7.4.4 Two Collinear Interface Cracks - s744CO2IFcrackUL

7.5 Examples

7.5.1 Near Tip Solutions

7.5.2 A Finite Straight Crack

7.5.3 Collinear Cracks

7.5.4 Collinear Interface Cracks

 

Chapter 8: Inclusions

8.1 Elliptical Elastic Inclusions

          8.1.1 Uniform Loading - s811EEincluUL

          8.1.2 Point Force at the Matrix - s812EEincluPFm

8.2 Rigid Inclusions

8.2.1 Elliptical Inclusions - s821_1ERincluUL, s821_2ERincluPF

  8.2.2 Line Inclusions - s822_1RLincluUL

  8.2.3 Polygon-like Inclusions - s823PRincluUL

8.3 Interactions Between Inclusions and Dislocations

  8.3.1 Dislocations Outside the Inclusions - s831EEincluDLo

  8.3.2 Dislocations Inside the Inclusions - s832EEincluDLi

  8.3.3 Dislocations on the Interfaces - s833EEincluDLf

8.4 Interactions Between Inclusions and Cracks

  8.4.1 Cracks Outside the Inclusions - s841EEincluCo

  8.4.2 Cracks Inside the Inclusions - s842EEincluCi

  8.4.3 Cracks Penetrating the Inclusions - s843EEincluCp

  8.4.4 Curvilinear Cracks Lying Along the Interfaces - s844EEincluCc

8.5 Functions for Common Use

  8.5.1 Function – TGCEF

  8.5.2 Function – Gauss_elimination

  8.5.3 Function – s84_CoeffUniform

  8.5.4 Function – s84_abcEFG

  8.5.5 Function – s84_Kt

  8.5.6 Function – s84_F12

  8.5.7 Function – s84_Kbeta

  8.5.8 Function – s84_uphi

8.6 Examples

8.6.1 Elliptical Elastic Inclusions

8.6.2 Rigid Inclusions

8.6.3 Inclusions and Dislocations

8.6.4 Inclusions and Cracks

 

Chapter 9: Contact Problems

9.1 Rigid Punches on a Half-Plane

9.1.1 General Solutions

9.1.2 A Flat-Ended Punch Indented by a Load - s912FpunchL

9.1.3 A Flat-Ended Punch Tilted by a Moment - s913FpunchM

9.1.4 A Parabolic Punch Indented by a Load - s914PpunchL

9.2 Rigid Stamp Indentation on a Curvilinear Hole Boundary

9.2.1 General Solutions

9.2.2 Elliptical Hole Boundaries - s922Estamp 9.2.3 Polygonal Hole Boundaries - s923Pstamp

9.3 Rigid Punches on a Perturbed Surface

9.3.1 Straight Boundary Perturbation

9.3.2 Elliptical Boundary Perturbation

9.3.3 Illustrative Examples – s9331_Cpunch, s933_2Tstamp

9.4 Sliding Punches with or without Friction

9.4.1 General Solutions - s941SpunchGS

9.4.2 A Sliding Wedge-Shaped Punch - s942SWpunch

9.4.3 A Sliding Parabolic Punch - s943SPpunch

9.4.4 Two Sliding Flat-Ended Punches - s944S2punch

9.5 Contact Between Two Elastic Bodies

9.5.1 Contact in the Presence of Friction - s951P2Fcontact

9.5.2 Contact in the Absence of Friction - s952P2contact

9.5.3 Contact in Complete Adhesion

9.6 Functions for Common Use

9.6.1 Function – s9_delLam

9.6.2 Function – s9_fzp

9.6.3 Function – s9_uphi

9.6.4 Function – s9_Plemelj

9.7 Examples

9.7.1 Rigid Punches on a Half-Plane

9.7.2 Rigid Stamp Indentation on a Curvilinear Hole Boundary

9.7.3 Rigid Punches on a Perturbed Surface

9.7.4 Sliding Punches with or without Friction

9.7.5 Contact Between Two Elastic Bodies

 

Chapter 10: Thermoelastic Problems

10.1 Extended Stroh Formalism

10.2 Holes and Cracks

       10.2.1 Elliptical Holes under Uniform Heat Flow - s1021EholeUH

       10.2.2 Cracks under Uniform Heat Flow - s1022crackUH

10.3 Rigid Inclusions

       10.3.1 Elliptical Rigid Inclusions under Uniform Heat Flow - s1031ERincluUH

       10.3.2 Rigid Line Inclusions under Uniform Heat Flow - s1032RLincluUH

10.4 Collinear Interface Cracks

       10.4.1 General Solutions

       10.4.2 Uniform Heat Flow - s1042IFcrackUH

10.5 Multi-Material Wedges

       10.5.1 Stress and Heat Flux Singularity

       10.5.2 Near Tip Solutions - s1052MwedgeTH

10.6 Function for Common Use

       10.6.1 Function – s10_gamma

10.7 Examples

       10.7.1 Holes, Cracks and Inclusions

       10.7.2 Multi-Material Wedges

 

Chapter 11: Piezoelectric and Magneto-Electro-Elastic Materials

11.1 Constitutive Laws

11.1.1 Piezoelectric Materials

11.1.2 Magneto-Electro-Elastic Materials – MEE, MEExy, MEE3Dto2D

11.2 Expanded Stroh Formalism

11.2.1 Piezoelectric Materials

11.2.2 Magneto-Electro-Elastic Materials

11.3 Holes

11.3.1 Elliptical Holes – s1131piezoEhole

11.3.2 Polygon-Like Holes - s1132piezoPhole

11.4 Multi-Material Wedges

11.4.1 Orders of Stress/Electric Singularity

11.4.2 Near Tip Solutions

11.4.3 H-integral

11.5 Singular Characteristics of Cracks

11.5.1 Cracks

11.5.2 Interface Cracks

11.6 Some Crack Problems

11.6.1 Cracks - s1161piezoCOcrack

11.6.2 Interface Cracks - s1162piezoIFcrack

11.7 Examples

11.7.1 Holes and Cracks

11.7.2 Multi-Material Wedges

11.7.3 Inclusions

11.7.4 Contact Problems

11.7.5 Thermoelastic Problems

 

Chapter 12: Viscoelastic Materials

12.1 Linear Anisotropic Viscoelasticity

12.1.1 Stroh Formalism in Laplace Domain

12.1.2 Material Eigenvalues and Eigenvectors - visco

12.1.3 Numerical inversion of the Laplace transform - Laplace_inv

12.2 Linear Anisotropic Thermo-Viscoelasticity

12.3 Problems with Viscoelastic Materials - s1221visco, visco_load

12.4 Examples

12.4.1 Holes, Cracks and Inclusions

12.4.2 Wedges and Interface Corners

12.4.3 Contact Problems

 

Chapter 13: Plate Bending Analysis

13.1 Bending Theory of Anisotropic Plates

13.2 Holes/Inclusions/Cracks

13.2.1 Elliptical Holes - s1321EholeUB

13.2.2 Elliptical Rigid Inclusions - s1322ERincluUB, s1420LAMincluUSB

13.2.3 Cracks - s1323crackUB

13.2.4 Elliptical Elastic Inclusions – s1324EEincluUB, s1423LAMEEincluUSB

13.3 Examples

 

Chapter 14: Coupled Stretching-Bending Analysis

14.1 Coupled Stretching-Bending Theory of Laminates

14.2 Holes in Laminates

14.2.1 Uniform Stretching and Bending Moments - s1421LAMholeUSB

14.2.2 Uniform Heat Flow - s1422LAMholeUH

14.3 Holes in Electro-Elastic Laminates

14.4 Green’s Functions for Laminates - s1441LAMinfPFM

14.5 Green’s Functions for Laminates with Holes/Cracks

14.5.1 Holes - s1451LAMholePFM

14.5.2 Cracks - s1452LAMcrackPFM

14.6 Green’s Functions for Laminates with Elastic Inclusions

14.6.1 Outside the Inclusions - s1461LAMincluPFMo

14.6.2 Inside the Inclusions - s1462LAMincluPFMi

14.7 Functions for Common Use

14.7.1 Function – s14_mdinf

14.7.2 Function – s14_eck

14.8 Examples

14.8.1 Holes in Laminates

14.8.2 Green’s Functions

 

Chapter 15: Boundary Element Analysis

15.1 An Overview

15.1.1 Boundary Integral Equations

15.1.2 Fundamental Solutions – Greenbank

15.1.3 Interpolation Functions

15.1.4 Boundary Element Formulation

15.1.5 Boundary-based Finite Element

15.1.6 Computational Procedure

15.1.7 Program Structure – BEMbankB, BEMbankIN

15.2 Fundamental Solutions for Two-Dimensional Anisotropic Elastic Analysis

15.2.1 An Infinite Plane – G1inf2D

15.2.2 A Half Plane – G2half2D

15.2.3 Interfaces – G3interface2D

15.2.4 Holes – G4hole2D

15.2.5 Cracks

15.2.6 Rigid Inclusions – G6Rinclusion2D

15.2.7 Elastic Inclusions – G7Einclusion2D

15.3 Fundamental Solutions for Coupled Stretching-Bending Analysis

15.3.1 An Infinite Laminate – G1infCouple

15.3.2 Holes – G4holeCouple

15.3.3 Cracks

15.3.4 Inclusions – G7inclusionCouple

15.4 Two-Dimensional Anisotropic Elastic Analysis – Basic Version

15.4.1 Mesh Generation of Boundary Element – BEMmesh

15.4.2 Influence Matrices – BEMinfluence, BEMinfluence_YG

15.4.3 Computation of Singular Integrals – BEMinfluence_G2

15.4.4 Solutions at the Boundary Nodes – BEM2DelasticB

15.4.5 Solutions at the Internal Points – BEM2DelasticIN, BEMinfluenceIN

15.4.6 Multiple Holes/Cracks/Inclusions - BFEM

15.5 Two-Dimensional Anisotropic Elastic Analysis – Extended Version

15.5.1 Piezoeletric/MEE Analysis

15.5.2 Viscoelastic Analysis – BEM2DviscoB, BEM2DviscoIN, BFEMv

15.5.3 Thermoelastic Analysis – BEMload_thermo, thermal_BEM

15.6 Two-Dimensional Anisotropic Dynamic Analysis

15.6.1 Particular Solutions – BEMload_dynamic

15.6.2 Boundary Element Formulation – BEM_YGMVsplit

15.6.3 Free vibration

15.6.4 Steady-state forced vibration

15.6.5 Transient analysis - BEM2DdynamicB, BEMdynamicIN

15.7 Coupled Stretching-Bending Analysis

15.7.1 Boundary Element Formulation –BEMcoupleB, BEMload_couple, BEMinfluence_Cc, BEMinfluence_Yt

15.7.2 Computation of Singular Integrals

15.7.3 Auxiliary Relations for the Multiple Nodes of Corners – BEM_aux

15.7.4 Solutions at the Boundary Nodes – BEMstrainstressB

15.7.5 Solutions at the Internal Points – BEMcoupleIN

15.8 Contact Analysis

15.8.1 Contact of Two Elastic Solids – BEM2Dcontact2ElaB

        15.8.2 Indentation by Multiple Rigid Punches – BEM2DcontactMReB

        15.8.3 Contact of Viscoelastic Solids - BEM2Dcontact2VisB, BEM2DcontactMRvBc, BEM2DcontactMRvBt

15.8.4 Functions for common use - BEM2Dcontact_BCv, BEM2Dcontact_CCR, BEM2Dcontact_Cstatus, BEM2Dcontact_Dfq, BEM2Dcontact_DT, BEM2Dcontact_localC, BEM2Dcontact_MRB, BEM2Dcontact_ut12, BEM2Dcontact_vtv, BEM2Dcontact_YGtoKf, BEM2DviscoINt

15.9 Three-Dimensional Analysis

15.9.1 Radon-Stroh Formalism - CijkstoCik

15.9.2 Fundamental Solutions - G1inf3D

        15.9.3 Boundary Element Formulation - BEM3DelasticB, BEM3DelasticIN,

BEMinfluence3D_YG, BEMstrainstressB3D

15.9.4 Extension to Piezoelectric and MEE materials

15.10 Functions for Common Use

15.10.1 Function - GreenCouple

15.10.2 Function - BEM_YGtoVg

15.10.3 Function - CSABD_star

15.10.4 Function - s15_pgzV

15.11 Examples

15.11.1 Two-Dimensional Anisotropic Elastic Analysis

15.11.2 Two-Dimensional Piezoelectric/Viscoelastic/Thermoelastic Analysis

15.11.3 Two-Dimensional Anisotropic Dynamic Analysis

15.11.4 Coupled Stretching-Bending Analysis

15.11.5 Contact Analysis

15.11.6 Three-Dimensional Analysis

 

Appendix A: Numerical Algorithms

A.1 Numerical Integration

       A.1.1 Gaussian Quadrature Rule

       A.1.2 Weakly Singular Integration - GaussLog

       A.1.3 Strongly Singular Integration - GaussInv

A.2 Solving Systems of Linear Equations

       A.2.1 Gaussian Elimination

A.3 Finding Zeros of Functions

       A.3.1 Newton’s Method

       A.3.2 Muller’s Method

 

Appendix B: Loops and Vectorization

B.1 Array vs. Matrix Operations

B.2 “for loop” Vectorization

B.3 “if statement” Vectorization

 

Appendix C: List of Functions

 

Appendix D: List of Global Variables

 

Appendix E: List of Input Files

E.1 Input Files for All Cases

E.2 Input Files for Material Properties

E.3 Input files for the Arrangement of Internal Points

E.4 Input Files for Load and Structural Information

E.5 Additional Input Files for BEM

 

Appendix F: AEPH Source Code

 

References

 

Author Index

 

Subject Index

Chyanbin Hwu obtained his B.S. degree of Civil Engineering from National Taiwan University in 1981, M.S. degree of Power Mechanical Engineering from National Tsing-Hua University in 1985, and Ph.D. degree of engineering mechanics from University of Illinois at Chicago in 1988. He joined Department of Aeronautics and Astronautics, National Cheng Kung University, Taiwan, as an associate professor in 1988, became a full professor in 1992 and a distinguished professor in 2003, and a chair professor since 2008. He was elected to be the president of the Society of Theoretical and Applied Mechanics (R.O.C.) in 2008. He is a fellow of the Aeronautical and Astronautical Society (R.O.C.), and the Society of Theoretical and Applied Mechanics (R.O.C.). He was the recipient of academic award (Ministry of Education, R.O.C.) in 2014, Sun Fang-Duo medal in 2011, and outstanding research awards (National Science Council, R.O.C.) in 1995-1996, 1998-1999, 2002-2004. He served as member of editorial board for International Journal of Solids and Structures in 2000-2005, editorial advisor for Journal of Mechanics of Materials and Structures in 2005-2015, and associated editor for Transactions of JSASS (The Japan Society for Aeronautical and Space Sciences) in 2014-present. He has published 114 referred journal papers, authored 1 book and 3 book chapters, edited 4 books, and presented 151 conference papers. His current research interests include mechanics of composite materials, fracture mechanics, anisotropic elasticity, and nanomaterials.

This book provides the theory of anisotropic elasticity with the computer program for analytical solutions as well as boundary element methods. It covers the elastic analysis of two-dimensional, plate bending, coupled stretching-bending, and three-dimensional deformations, and is extended to the piezoelectric, piezomagnetic, magnetic-electro-elastic, viscoelastic materials, and the ones under thermal environment. The analytical solutions include the solutions for infinite space, half-space, bi-materials, wedges, interface corners, holes, cracks, inclusions, and contact problems. The boundary element solutions include BEMs for two-dimensional anisotropic elastic, piezoelectric, magnetic-electro-elastic, viscoelastic analyses, and their associated dynamic analyses, as well as coupled stretching-bending analysis, contact analysis, and three-dimensional analysis. This book also provides source codes and examples for all the presenting analytical solutions and boundary element methods. The program is named as AEPH (Anisotropic Elastic Plates – Hwu), which contains 204 MATLAB functions.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia