ISBN-13: 9781119679462 / Angielski / Twarda / 2022 / 400 str.
ISBN-13: 9781119679462 / Angielski / Twarda / 2022 / 400 str.
Preface xviiAcknowledgement for the Original Edition xxiAcknowledgement for this Edition xxiiiAbbreviations for Organizations xxv1 Basic Concepts 11.1 Introduction 21.2 Creep in Metals 31.2.1 Description and Measurement 31.2.2 Elevated Temperature Material Behavior 51.2.3 Creep Characteristics 71.3 Allowable Stress 121.3.1 ASME Boiler and Pressure Vessel Code 121.3.2 European Standard EN 13445 141.4 Creep Properties 171.4.1 ASME Code Methodology 171.4.2 Larson-Miller Parameter 181.4.3 Omega Method 201.4.4 Negligible Creep Criteria 201.4.5 Environmental Effects 221.4.6 Monkman-Grant Strain 231.5 Required Pressure-Retaining Wall Thickness 231.5.1 Design by Rule 231.5.2 Design by Analysis 241.5.3 Approximate Methods 241.5.3.1 Stationary Creep - Elastic Analog 241.5.3.2 Reference Stress 251.6 Effects of Structural Discontinuities and Cyclic Loading 301.6.1 Elastic Follow-Up 301.6.2 Pressure-Induced Discontinuity Stresses 331.6.3 Shakedown and Ratcheting 351.6.4 Fatigue and Creep-Fatigue 411.6.4.1 Linear Life Fraction - Time Fraction 441.6.4.2 Ductility Exhaustion 441.7 Buckling and Instability 45Problems 462 Axially Loaded Structural Members 472.1 Introduction 482.2 Stress Analysis 532.3 Design of Structural Components Using ASME I and VIII-1 as a Guide 602.4 Temperature Effect 622.5 Design of Structural Components Using ASME I, III-5, and VIII as a Guide - Creep Life and Deformation Limits 642.6 Reference Stress Method 712.7 Elastic Follow-up 72Problems 773 Structural Members in Bending 793.1 Introduction 803.2 Bending of Beams 803.2.1 Rectangular Cross Sections 823.2.2 Circular Cross Sections 823.3 Shape Factors 853.3.1 Rectangular Cross Sections 863.3.2 Circular Cross Sections 883.4 Deflection of Beams 893.5 Stress Analysis 923.5.1 Commercial Programs 993.6 Reference Stress Method 1003.7 Piping Analysis - ASME B31.1 and B31.3 1023.7.1 Introduction 1023.7.2 Design Categories and Allowable Stresses 1023.7.2.1 Pressure Design 1033.7.2.2 Sustained and Occasional Loading 1033.7.2.3 Thermal Expansion 1033.7.3 Creep Effects 1053.7.3.1 Weld Strength Reduction Factors 1053.7.3.2 Elastic Follow-Up 1053.7.3.3 Cyclic Life Degradation 1063.8 Circular Plates 106Problem 1084 Analysis of ASME Pressure Vessel Components: Load-Controlled Limits 1094.1 Introduction 1094.2 Design Thickness 1114.2.1 Asme I 1124.2.2 Asme VIII 1134.3 Stress Categories 1174.3.1 Primary Stress 1184.3.1.1 General Primary Membrane Stress (P m) 1184.3.1.2 Local Primary Membrane Stress (P L) 1194.3.1.3 Primary Bending Stress (P b) 1194.3.2 Secondary Stress, Q 1194.3.3 Peak Stress, F 1204.3.4 Separation of Stresses 1204.3.5 Thermal Stress 1264.4 Equivalent Stress Limits for Design and Operating Conditions 1264.5 Load-Controlled Limits for Components Operating in the Creep Range 1334.6 Reference Stress Method 1434.6.1 Cylindrical Shells 1434.6.2 Spherical Shells 152Problems 1535 Analysis of Components: Strain and Deformation-Controlled Limits 1555.1 Introduction 1555.2 Strain and Deformation-Controlled Limits 1565.3 Elastic Analysis 1575.3.1 Test A- 1 1575.3.2 Test A- 2 1615.3.3 Test A- 3 1615.4 Simplified Inelastic Analysis 1695.4.1 Tests B-1 and B- 2 1735.4.2 Test B- 1 1735.4.3 Test B- 2 174Problems 1796 Creep-Fatigue Analysis 1816.1 Introduction 1816.2 Creep-Fatigue Evaluation Using Elastic Analysis 1826.3 Welded Components 2116.4 Variable Cyclic Loads 2116.5 Equivalent Stress Range Determination 2136.5.1 Equivalent Strain Range Determination - Applicable to Rotating Principal Strains 2136.5.2 Equivalent Strain Range Determination - Applicable When Principal Strains Do Not Rotate 2146.5.3 Equivalent Strain Range Determination - Acceptable Alternate When Performing Elastic Analysis 2156.5.3.1 Constant Principal Stress Direction 2156.5.3.2 Rotating Principal Stress Direction 2156.5.3.3 Variable Cycles 215Problems 2217 Creep-Fatigue Analysis Using the Remaining Life Method 2237.1 Basic Equations 2237.2 Equations for Creep-Fatigue Interaction 2257.3 Equations for Constructing Ishochronous Stress-Strain Curves 2328 Nuclear Components Operating in the Creep Regime 2378.1 Introduction 2378.2 High Temperature Reactor Characteristics 2398.3 Materials and Design of Class A Components 2418.3.1 Materials 2418.3.1.1 Thermal Aging Effects 2428.3.1.2 Creep-Fatigue Acceptance Test 2428.3.1.3 Restricted Material Specifications to Improve Performance 2428.3.2 Design by Analysis 2438.3.2.1 Equivalent Stress Definition 2438.3.2.2 Rules for Bolting 2458.3.2.3 Weldment Strength Reduction Factors 2468.3.2.4 Constitutive Models for Inelastic Analysis 2468.3.2.5 A-1, A-2, and A-3 Test Order 2468.3.2.6 Determination of Relaxation Stress, S r 2468.3.2.7 Buckling and Instability 2478.3.2.8 d diagram differences 2488.3.2.9 Isochronous Stress-Strain Curve Differences 2488.3.3 Component Design Rules 2488.4 Class B Components 2498.4.1 Materials 2498.4.2 Design 2508.5 Core Support Structures 2519 Members in Compression 2539.1 Introduction 2539.2 Construction of External Pressure Charts (EPC) Using Isochronous Stress-Strain Curves 2549.3 Cylindrical Shells Under Axial Compression 2599.4 Cylindrical Shells Under External Pressure 2639.5 Spherical Shells Under External Pressure 2669.6 Design of Structural Columns 2699.7 Construction of External Pressure Charts (EPC) Using the Remaining Life Method 273Appendix A: ASME VIII-2 Supplemental Rules for Creep Analysis 279Case 2843-2 279Analysis of Class 2 Components in the Time-Dependent Regime 279Section VIII, Division 2 2791 Scope 2792 Strain Deformation Method 2813 Materials and other Properties 2813.1 Materials 2813.2 Weld Materials 2823.3 Design Fatigue Strain Range 2823.4 Stress Values 2833.5 Stress Terms 2844 Design Criteria 2844.1 Short-Term Loads 2845 Load-Controlled Limits 2855.1 Design Load Limits 2855.2 Operating Load Limits 2866 Strain Limits 2886.1 Test A-1 Alternative Rules if Creep Effects are Negligible 2886.2 Strain Limits - Elastic Analysis 2916.2.1 General Requirements 2916.2.2 Test A- 2 2936.2.3 Test A- 3 2936.3 Strain Limits - Simplified Inelastic Analysis 2936.3.1 General Requirements 2936.3.2 General Requirements for Tests B-1 and B- 2 2936.3.3 Applicability of Tests B-1 and B- 2 2966.3.3.1 Test B- 1 2966.3.3.2 Test B- 2 2976.4 Strain Limits - Inelastic Analysis 2977 Creep Fatigue Evaluation 2977.1 General Requirements 2977.2 Creep Fatigue Procedure 2987.2.1 Creep Procedure 2987.2.2 Fatigue Procedure 3027.2.3 Creep-Fatigue Interaction 3038 Nomenclature 304Appendix B: Equations for Average Isochronous Stress-Strain Curves 307B. 1 Type 304 Stainless Steel Material 307B.1. 1 304 Customary Units 307B.1. 2 304 SI Units 310B. 2 Type 316 Stainless Steel Material 313B.2. 1 316 Customary Units 313B.2. 2 316 SI Units 316B. 3 Low Alloy 2.25Cr-1Mo Annealed Steel 321B.3. 1 2.25Cr-1Mo Customary Units 321B.3. 2 2.25 Cr-1Mo Steel SI Units 324B. 4 Low Alloy 9Cr-1Mo-V Steel 328B.4. 1 9Cr-1Mo-V Customary Units 328B.4. 2 9Cr-1Mo-V SI Units 330B. 5 Nickel Alloy 800H 332B.5. 1 Alloy 800H Customary Units 332B.5. 2 Alloy 800H SI Units 334Appendix C: Equations for Tangent Modulus, E t 337C.1 Tangent Modulus, E t 337C.2 Type 304 Stainless Steel Material 337Appendix D: Background of the Bree Diagram 343D. 1 Basic Bree Diagram Derivation 343Zone E 343Zone S 1 347Zone S 2 350Zone P 351Zone R 1 352Zone R 2 355Appendix E: Factors for the Remaining Life Method 357Appendix F: Conversion Factors 363References 365Bibliography of Some Publications Related to Creep in Addition to Those Cited in the References 369Index 371
Maan H. Jawad, PhD, is President of Global Engineering and Technology in the United States, a firm that offers engineering consulting to the pressure vessel, power, petrochemical, and nuclear industries. Previously, he served as Director of Engineering at the Nooter Corporation that fabricates pressure vessels for the boiler, petrochemical, and nuclear industries.Robert I. Jetter has over 50 years of experience in the design and structural evaluation of nuclear components and systems for elevated temperature service. He participated in and directed design of early sodium cooled reactors and space power plants through all the US LMFBR programs. He currently consults on the development and application of elevated temperature design criteria for advanced nuclear applications.
1997-2025 DolnySlask.com Agencja Internetowa