Preface; Notation; 1. The particle physicist's view of nature; 2. Lorentz transformations; 3. The Lagrangian formulation of mechanics; 4. Classical electromagnetism; 5. The Dirac equation and the Dirac field; 6. Free space solutions of the Dirac equation; 7. Electrodynamics; 8. Quantising fields: QED; 9. The weak interaction: low energy phenomenology; 10. Symmetry breaking in model theories; 11. Massive gauge fields; 12. The Weinberg-Salam electroweak theory for leptons; 13. Experimental tests of the Weinberg-Salam theory; 14. The electromagnetic and weak interactions of quarks; 15. The hadronic decays of the Z and W bosons; 16. The theory of strong interactions: quantum chromodynamics; 17. Quantum chromodynamics: calculations; 18. The Kobayashi-Maskawa matrix; 19. Neutrino masses and mixing; 20. Neutrino masses and mixing: experimental results; 21. Majorana neutrinos; 22. Anomalies; Epilogue; Appendix A. An aide-memoire on matrices; Appendix B. The groups of the Standard Model; Appendix C. Annihilation and creation operators; Appendix D. The parton model; Appendix E. Mass matrices and mixing; References; Hints to selected problems; Index.