• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

An Introduction to Sequential Monte Carlo » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2950560]
• Literatura piękna
 [1849509]

  więcej...
• Turystyka
 [71097]
• Informatyka
 [151150]
• Komiksy
 [35848]
• Encyklopedie
 [23178]
• Dziecięca
 [617388]
• Hobby
 [139064]
• AudioBooki
 [1657]
• Literatura faktu
 [228597]
• Muzyka CD
 [383]
• Słowniki
 [2855]
• Inne
 [445295]
• Kalendarze
 [1464]
• Podręczniki
 [167547]
• Poradniki
 [480102]
• Religia
 [510749]
• Czasopisma
 [516]
• Sport
 [61293]
• Sztuka
 [243352]
• CD, DVD, Video
 [3414]
• Technologie
 [219456]
• Zdrowie
 [101002]
• Książkowe Klimaty
 [124]
• Zabawki
 [2311]
• Puzzle, gry
 [3459]
• Literatura w języku ukraińskim
 [254]
• Art. papiernicze i szkolne
 [8079]
Kategorie szczegółowe BISAC

An Introduction to Sequential Monte Carlo

ISBN-13: 9783030478445 / Angielski / Twarda / 2020 / 378 str.

Nicolas Chopin; Omiros Papaspiliopoulos
An Introduction to Sequential Monte Carlo Nicolas Chopin Omiros Papaspiliopoulos 9783030478445 Springer - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

An Introduction to Sequential Monte Carlo

ISBN-13: 9783030478445 / Angielski / Twarda / 2020 / 378 str.

Nicolas Chopin; Omiros Papaspiliopoulos
cena 402,53
(netto: 383,36 VAT:  5%)

Najniższa cena z 30 dni: 346,96
Termin realizacji zamówienia:
ok. 22 dni roboczych
Dostawa w 2026 r.

Darmowa dostawa!
inne wydania
Kategorie:
Nauka, Matematyka
Kategorie BISAC:
Mathematics > Prawdopodobieństwo i statystyka
Computers > Database Administration & Management
Science > System Theory
Wydawca:
Springer
Seria wydawnicza:
Springer Statistics
Język:
Angielski
ISBN-13:
9783030478445
Rok wydania:
2020
Wydanie:
2020
Numer serii:
000904298
Ilość stron:
378
Waga:
0.73 kg
Wymiary:
23.39 x 15.6 x 2.39
Oprawa:
Twarda
Wolumenów:
01
Dodatkowe informacje:
Bibliografia
Wydanie ilustrowane

"The authors have written a comprehensive broad-audience treatment of sequential Monte Carlo (SMC) methods, covering all its major and diverse applications. ... The book is structured as an advanced Ph.D.-level textbook." (Michael Ludkovski, Mathematical Reviews, May, 2022)

1 Preface.- 2 Introduction to state-space models.- 3 Beyond state-space models.- 4 Introduction to Markov processes.- 5 Feynman-Kac models: definition, properties and recursions.- 6 Finite state-spaces and hidden Markov models.- 7 Linear-Gaussian state-space models.- 8 Importance sampling.- 9 Importance resampling.- 10 Particle filtering.- 11 Convergence and stability of particle filters.- 12 Particle smoothing.- 13 Sequential quasi-Monte Carlo.- 14 Maximum likelihood estimation of state-space models.- 15 Markov chain Monte Carlo.- 16 Bayesian estimation of state-space models and particle MCMC.- 17 SMC samplers.- 18 SMC2, sequential inference in state-space models.- 19 Advanced topics and open problems.

Omiros Papaspiliopoulos (PhD, Lancaster University, 2003) is an ICREA Research Professor and Director of the Data Science Center at Barcelona Graduate School of Economics. Previous positions include Full Professor at Universitat Pompeu Fabra, Assistant Professor at Warwick University and Research Associate at Lancaster and Oxford University.

He is currently co-editor of Biometrika, and has been an Associate Editor for the Journal of the Royal Statistical Society Series B, Biometrika, Journal of Uncertainty Quantification (SIAM) and Statistics and Computing. He has delivered more than 100 invited talks, and has given courses at ENSAE in Paris, the Berlin Mathematical School, the Department of Mathematics at the University of Copenhagen, and the Engineering Department at Osaka University. In 2010 he was awarded the Royal Statistical Society’s Guy Medal in Bronze.

His research interests include computational statistics, applied mathematics and machine learning.


Nicolas Chopin (PhD, Université Pierre et Marie Curie, Paris, 2003) has been a Professor of Statistics at ENSAE, Paris, since 2006. He was previously a lecturer at Bristol University (UK).

He is a current or former associate editor for Annals of Statistics, Biometrika, Journal of the Royal Statistical Society, Statistics and Computing, and Statistical Methods & Applications. He has served as a member (2013-14) and secretary (2015-16) of the research section committee of the Royal Statistical Society. He received a Savage Award for his doctoral dissertation in 2002.

His research interests include computational statistics, Bayesian inference, and machine learning..

This book provides a general introduction to Sequential Monte Carlo (SMC) methods, also known as particle filters. These methods have become a staple for the sequential analysis of data in such diverse fields as signal processing, epidemiology, machine learning, population ecology, quantitative finance, and robotics.

The coverage is comprehensive, ranging from the underlying theory to computational implementation, methodology, and diverse applications in various areas of science. This is achieved by describing SMC algorithms as particular cases of a general framework, which involves concepts such as Feynman-Kac distributions, and tools such as importance sampling and resampling. This general framework is used consistently throughout the book.

Extensive coverage is provided on sequential learning (filtering, smoothing) of state-space (hidden Markov) models, as this remains an important application of SMC methods. More recent applications, such as parameter estimation of these models (through e.g. particle Markov chain Monte Carlo techniques) and the simulation of challenging probability distributions (in e.g. Bayesian inference or rare-event problems), are also discussed.

The book may be used either as a graduate text on Sequential Monte Carlo methods and state-space modeling, or as a general reference work on the area. Each chapter includes a set of exercises for self-study, a comprehensive bibliography, and a “Python corner,” which discusses the practical implementation of the methods covered. In addition, the book comes with an open source Python library, which implements all the algorithms described in the book, and contains all the programs that were used to perform the numerical experiments.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia