'An engaging introduction for students and researchers approaching this observational field for the first time.' All About Space
Preface; Acknowledgements; Part I. The Emission, Propagation, and Detection of Radio Waves: 1. The role of radio observations in astronomy; 2. Emission and general properties of radio waves; 3. Spectral lines; 4. Radio wave propagation; 5. The nature of the received radio signal; 6. Radiometers; 7. Spectrometers and polarimeters; Part II. Radio Telescopes and Aperture Synthesis: 8. Single-aperture radio telescopes; 9. The basics of interferometry; 10. Aperture synthesis; 11. Further interferometric techniques; Part III. The Radio Cosmos: 12. The Sun and the planets; 13. Stars and nebulae; 14. The Milky Way galaxy; 15. Pulsars; 16. Active galaxies; 17. The radio contributions to cosmology; Appendix 1. Fourier transforms; Appendix 2. Celestial coordinates and time; Appendix 3. Digitization; Appendix 4. Calibrating polarimeters; Appendix 5. Spherical harmonics; References; Index.
Burke, Bernard F.
Bernard F. Burke was William A. M. Burden Professor of Astrophysics, formerly of the Radio Astronomy Group of the Massachusetts Institute of Technology (MIT) Research Laboratory of Electronics, and principal investigator at the MIT Kavli Institute for Astrophysics and Space Research. He was elected a member of the United States National Academy of Sciences in 1970, and served as the American Astronomical Society (AAS) President from 1986 to 1988. He and Kenneth Franklin discovered Jupiter as a source of radio waves while working at the Carnegie Institution for Science; and he was part of the 6-member team credited with the 1988 discovery of the first Einstein ring.
Graham-Smith, Francis
Francis Graham-Smith, FRS is Emeritus Professor at the University of Manchester. He was Astronomer Royal from 1982 to 1990 and Director of Jodrell Bank Observatory between 1981 and 1988. As Director of the Royal Greenwich Observatory between 1975 and 1981, Graham-Smith instituted the UK optical observatory on La Palma. In his student days at the University of Cambridge he made the first accurate locations for cosmic radio sources, leading to their identification. At Jodrell Bank he discovered radio emission from cosmic ray showers, and continues to work on pulsars, in which he discovered the polarization of the radio pulses. He is a co-author of Pulsar Astronomy (Cambridge, 4th edition, 2012).
Wilkinson, Peter N.
Peter N. Wilkinson is Emeritus Professor of Radio Astronomy at the University of Manchester. He has been involved in the development of radio telescopes at Jodrell Bank Observatory since 1967, including five years spent at a combination of the California Institute of Technology and the US National Radio Astronomy Observatory. In 1991 he wrote the first published paper describing the scientific rationale and outline structure of a radio interferometer array which developed into the Square Kilometre Array (SKA) project. He is now working on a novel radio telescope to map the sky with a precision ten times better than achieved by the discoverers of the Cosmic Microwave Background. He is a leading member of the UK's Newton Project, which teaches radio astronomy to students world-wide.