• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

An Introduction to Metric Spaces and Fixed Point Theory » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946600]
• Literatura piękna
 [1856966]

  więcej...
• Turystyka
 [72221]
• Informatyka
 [151456]
• Komiksy
 [35826]
• Encyklopedie
 [23190]
• Dziecięca
 [619653]
• Hobby
 [140543]
• AudioBooki
 [1577]
• Literatura faktu
 [228355]
• Muzyka CD
 [410]
• Słowniki
 [2874]
• Inne
 [445822]
• Kalendarze
 [1744]
• Podręczniki
 [167141]
• Poradniki
 [482898]
• Religia
 [510455]
• Czasopisma
 [526]
• Sport
 [61590]
• Sztuka
 [243598]
• CD, DVD, Video
 [3423]
• Technologie
 [219201]
• Zdrowie
 [101638]
• Książkowe Klimaty
 [124]
• Zabawki
 [2473]
• Puzzle, gry
 [3898]
• Literatura w języku ukraińskim
 [254]
• Art. papiernicze i szkolne
 [8170]
Kategorie szczegółowe BISAC

An Introduction to Metric Spaces and Fixed Point Theory

ISBN-13: 9780471418252 / Angielski / Twarda / 2001 / 320 str.

Mohamed A. Khamsi; William A. Kirkland; William A. Kirk
An Introduction to Metric Spaces and Fixed Point Theory Mohamed A. Khamsi William A. Kirkland William A. Kirk 9780471418252 Wiley-Interscience - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

An Introduction to Metric Spaces and Fixed Point Theory

ISBN-13: 9780471418252 / Angielski / Twarda / 2001 / 320 str.

Mohamed A. Khamsi; William A. Kirkland; William A. Kirk
cena 896,45 zł
(netto: 853,76 VAT:  5%)

Najniższa cena z 30 dni: 889,10 zł
Termin realizacji zamówienia:
ok. 30 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!

Presents up-to-date Banach space results.
* Features an extensive bibliography for outside reading.
* Provides detailed exercises that elucidate more introductory material.

Kategorie:
Nauka, Matematyka
Kategorie BISAC:
Mathematics > Topologia
Mathematics > Algebra - Liniowa
Wydawca:
Wiley-Interscience
Seria wydawnicza:
Pure and Applied Mathematics: A Wiley-Interscience Series of
Język:
Angielski
ISBN-13:
9780471418252
Rok wydania:
2001
Numer serii:
000019450
Ilość stron:
320
Waga:
0.57 kg
Wymiary:
24.08 x 15.6 x 2.06
Oprawa:
Twarda
Wolumenów:
01
Dodatkowe informacje:
Bibliografia

"...deserves to be on the bookshelf of everyone who wants to know about fixed–point theory in metric and Banach spaces and experts who want to read an insightful survey of some basic ideas..." (Mathematical Reviews, 2002b)

"Clear, friendly exposition." (American Mathematical Monthly, August/September 2002)

Preface ix

I Metric Spaces

1 Introduction 3

1.1 The real numbers R 3

1.2 Continuous mappings in R 5

1.3 The triangle inequality in R 7

1.4 The triangle inequality in R" 8

1.5 Brouwer′s Fixed Point Theorem 10

Exercises 11

2 Metric Spaces 13

2.1 The metric topology 15

2.2 Examples of metric spaces 19

2.3 Completeness 26

2.4 Separability and connectedness 33

2.5 Metric convexity and convexity structures 35

Exercises 38

3 Metric Contraction Principles 41

3.1 Banach′s Contraction Principle 41

3.2 Further extensions of Banach′s Principle 46

3.3 The Caristi–Ekeland Principle 55

3.4 Equivalents of the Caristi–Ekeland Principle 58

3.5 Set–valued contractions 61

3.6 Generalized contractions 64

Exercises 67

4 Hyperconvex Spaces 71

4.1 Introduction 71

4.2 Hyperconvexity 77

4.3 Properties of hyperconvex spaces 80

4.4 A fixed point theorem 84

4.5 Intersections of hyperconvex spaces 87

4.6 Approximate fixed points 89

4.7 Isbell′s hyperconvex hull 91

Exercises 98

5 "Normal" Structures in Metric Spaces 101

5.1 A fixed point theorem 101

5.2 Structure of the fixed point set 103

5.3 Uniform normal structure 106

5.4 Uniform relative normal structure 110

5.5 Quasi–normal structure 112

5.6 Stability and normal structure 115

5.7 Ultrametric spaces 116

5.8 Fixed point set structure separable case 120

Exercises 123

II Banach Spaces

6 Banach Spaces: Introduction 127

6.1 The definition 127

6.2 Convexity 131

6.3 £2 revisited 132

6.4 The modulus of convexity 136

6.5 Uniform convexity of the tp spaces 138

6.6 The dual space: Hahn–Banach Theorem 142

6.7 The weak and weak∗ topologies 144

6.8 The spaces c, CQ, t and ^ 146

6.9 Some more general facts 148

6.10 The Schur property and £j 150

6.11 More on Schauder bases in Banach spaces 154

6.12 Uniform convexity and reflexivity 163

6.13 Banach lattices 165

Exercises 168

7 Continuous Mappings in Banach Spaces 171

7.1 Introduction 171

7.2 Brouwer′s Theorem 173

7.3 Further comments on Brouwer′s Theorem 176

7.4 Schauder′s Theorem 179

7.5 Stability of Schauder′s Theorem 180

7.6 Banach algebras: Stone Weierstrass Theorem 182

7.7 Leray–Schauder degree 183

7.8 Condensing mappings 187

7.9 Continuous mappings in hyperconvex spaces 191

Exercises 195

8 Metric Fixed Point Theory 197

8.1 Contraction mappings 197

8.2 Basic theorems for nonexpansive mappings 199

8.3 A closer look at ßë 205

8.4 Stability results in arbitrary spaces 207

8.5 The Goebel–Karlovitz Lemma 211

8.6 Orthogonal convexity 213

8.7 Structure of the fixed point set 215

8.8 Asymptotically regular mappings 219

8.9 Set–valued mappings 222

8.10 Fixed point theory in Banach lattices 225

Exercises 238

9 Banach Space Ultrapowers 243

9.1 Finite representability 243

9.2 Convergence of ultranets 248

9.3 The Banach space ultrapower X 249

9.4 Some properties of X 252

9.5 Extending mappings to X 255

9.6 Some fixed point theorems 257

9.7 Asymptotically nonexpansive mappings 262

9.8 The demiclosedness principle 263

9.9 Uniformly non–creasy spaces 264

Exercises 270

Appendix: Set Theory 273

A.l Mappings 273

A.2 Order relations and Zermelo′s Theorem 274

A.3 Zorn′s Lemma and the Axiom Of Choice 275

A.4 Nets and subnets 277

A.5 Tychonoff′s Theorem 278

A.6 Cardinal numbers 280

A. 7 Ordinal numbers and transfinite induction 281

A.8 Zermelo′s Fixed Point Theorem 284

A.9 A remark about constructive mathematics 286

Exercises 287

Bibliography 289

Index 301

An Introduction to Metric Spaces and Fixed Point Theory includes an extensive bibliography and an appendix which provides a complete summary of the concepts of set theory, including Zorn′s Lemma, Tychonoff′s Theorem, Zermelo′s Theorem, and transfinite induction. Detailed coverage of the newest developments in metric spaces and fixed point theory makes this the most modern and complete introduction to the subject available.

MOHAMED A. KHAMSI, PhD, is Professor in the Department of Mathematical Sciences at the University of Texas at El Paso and visiting Professor in the Department of Mathematics at Kuwait University. He is also co–author of Nonstandard Methods in Fixed Point Theory.

WILLIAM A. KIRK, PhD, is Professor in the Department of Mathematics at the University of Iowa, Iowa City, Iowa. He has authored over 100 journal articles and is co–author of Topics in Metric Fixed Point.

A comprehensive, basic level introduction to metric spaces and fixed point theory

An Introduction to Metric Spaces and Fixed Point Theory presents a highly self–contained treatment of the subject that is accessible for students and researchers from diverse mathematical backgrounds, including those who may have had little training in mathematics beyond calculus. It provides up–to–date coverage of the properties of metric spaces and Banach spaces, as well as a detailed summary of the primary concepts of set theory.

The authors take a unique approach to the subject by including a number of helpful basic level exercises and using a simple and accessible level of presentation. They provide a highly comprehensive development of what is known in a purely metric context–especially in hyperconvex spaces–and a number of up–to–date Banach space results which are too recent to be found in other books on the subject.

In addition to introductory coverage of metric spaces and Banach spaces, the authors provide detailed analyses of these important topics in the subject:
∗ Metric contraction principles
∗ Hyperconvex spaces
∗ "Normal" structures in metric spaces
∗ Continuous mappings in Banach spaces
∗ Metric fixed point theory
∗ Banach space ultrapowers



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia