• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

An Introduction to Artificial Intelligence Based on Reproducing Kernel Hilbert Spaces » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946350]
• Literatura piękna
 [1816154]

  więcej...
• Turystyka
 [70666]
• Informatyka
 [151172]
• Komiksy
 [35576]
• Encyklopedie
 [23172]
• Dziecięca
 [611458]
• Hobby
 [135995]
• AudioBooki
 [1726]
• Literatura faktu
 [225763]
• Muzyka CD
 [378]
• Słowniki
 [2917]
• Inne
 [444280]
• Kalendarze
 [1179]
• Podręczniki
 [166508]
• Poradniki
 [469467]
• Religia
 [507199]
• Czasopisma
 [496]
• Sport
 [61352]
• Sztuka
 [242330]
• CD, DVD, Video
 [3348]
• Technologie
 [219391]
• Zdrowie
 [98638]
• Książkowe Klimaty
 [124]
• Zabawki
 [2382]
• Puzzle, gry
 [3525]
• Literatura w języku ukraińskim
 [259]
• Art. papiernicze i szkolne
 [7107]
Kategorie szczegółowe BISAC

An Introduction to Artificial Intelligence Based on Reproducing Kernel Hilbert Spaces

ISBN-13: 9783030983154 / Angielski / Miękka / 2022 / 148 str.

Sergei Pereverzyev
An Introduction to Artificial Intelligence Based on Reproducing Kernel Hilbert Spaces Sergei Pereverzyev   9783030983154 Springer Nature Switzerland AG - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

An Introduction to Artificial Intelligence Based on Reproducing Kernel Hilbert Spaces

ISBN-13: 9783030983154 / Angielski / Miękka / 2022 / 148 str.

Sergei Pereverzyev
cena 181,11
(netto: 172,49 VAT:  5%)

Najniższa cena z 30 dni: 173,46
Termin realizacji zamówienia:
ok. 16-18 dni roboczych.

Darmowa dostawa!

This textbook provides an in-depth exploration of statistical learning with reproducing kernels, an active area of research that can shed light on trends associated with deep neural networks. The author demonstrates how the concept of reproducing kernel Hilbert Spaces (RKHS), accompanied with tools from regularization theory, can be effectively used in the design and justification of kernel learning algorithms, which can address problems in several areas of artificial intelligence. Also provided is a detailed description of two biomedical applications of the considered algorithms, demonstrating how close the theory is to being practically implemented. Among the book's several unique features is its analysis of a large class of algorithms of the Learning Theory that essentially comprise every linear regularization scheme, including Tikhonov regularization as a specific case. It also provides a methodology for analyzing not only different supervised learning problems, such as regression or ranking, but also different learning scenarios, such as unsupervised domain adaptation or reinforcement learning. By analyzing these topics using the same theoretical framework, rather than approaching them separately, their presentation is streamlined and made more approachable. An Introduction to Artificial Intelligence Based on Reproducing Kernel Hilbert Spaces is an ideal resource for graduate and postgraduate courses in computational mathematics and data science.

Kategorie:
Nauka, Matematyka
Kategorie BISAC:
Mathematics > Functional Analysis
Computers > Artificial Intelligence - General
Mathematics > Prawdopodobieństwo i statystyka
Wydawca:
Springer Nature Switzerland AG
Język:
Angielski
ISBN-13:
9783030983154
Rok wydania:
2022
Dostępne języki:
Numer serii:
000455623
Ilość stron:
148
Waga:
0.31 kg
Wymiary:
23.37 x 15.49 x 0.76
Oprawa:
Miękka

"This is a very beautiful book ... . Everyone with mathematical background and interested in learning theory and regularization should, or rather must, read this book." (Andreas Wichert, zbMATH 1500.68004, 2023)

Introduction.- Learning in Reproducing Kernel Hilbert Spaces and related integral operators.- Selected topics of the regularization theory.- Regularized learning in RKHS.- Examples of Applications.

Sergei V. Pereverzyev is Professor and Senior Fellow of the Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences. He is the second recipient of the International Prize for Achievement in Information-Based Complexity (2000), and the inventor of a patented innovation in diabetes technology (2019). He is also the author of two monographs, over one hundred scholarly articles and serves as a member of editorial boards of such international journals as Applied and Computational Harmonic Analysis, Journal of Complexity, Computational Methods in Applied Mathematics, International Journal on Geomathematics, Journal of Diabetes & Metabolism, Frontiers in Applied Mathematics and Statistics, International Journal of Wavelets, Multiresolution and Information Processing. He was principal investigator and person in charge of several research projects granted by research programs FP7 and Horizon-2020, the Austrian Science Fund (FWF), the Austrian Research Promotion Agency (FFG) and the German Research Foundation (DFG).

This textbook provides an in-depth exploration of statistical learning with reproducing kernels, an active area of research that can shed light on trends associated with deep neural networks. The author demonstrates how the concept of reproducing kernel Hilbert Spaces (RKHS), accompanied with tools from regularization theory, can be effectively used in the design and justification of kernel learning algorithms, which can address problems in several areas of artificial intelligence. Also provided is a detailed description of two biomedical applications of the considered algorithms, demonstrating how close the theory is to being practically implemented.


Among the book’s several unique features is its analysis of a large class of algorithms of the Learning Theory that essentially comprise every linear regularization scheme, including Tikhonov regularization as a specific case. It also provides a methodology for analyzing not only different supervised learning problems, such as regression or ranking, but also different learning scenarios, such as unsupervised domain adaptation or reinforcement learning. By analyzing these topics using the same theoretical framework, rather than approaching them separately, their presentation is streamlined and made more approachable.

An Introduction to Artificial Intelligence Based on Reproducing Kernel Hilbert Spaces is an ideal resource for graduate and postgraduate courses in computational mathematics and data science.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2026 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia