• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Algorithmic Learning in a Random World » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946600]
• Literatura piękna
 [1856966]

  więcej...
• Turystyka
 [72221]
• Informatyka
 [151456]
• Komiksy
 [35826]
• Encyklopedie
 [23190]
• Dziecięca
 [619653]
• Hobby
 [140543]
• AudioBooki
 [1577]
• Literatura faktu
 [228355]
• Muzyka CD
 [410]
• Słowniki
 [2874]
• Inne
 [445822]
• Kalendarze
 [1744]
• Podręczniki
 [167141]
• Poradniki
 [482898]
• Religia
 [510455]
• Czasopisma
 [526]
• Sport
 [61590]
• Sztuka
 [243598]
• CD, DVD, Video
 [3423]
• Technologie
 [219201]
• Zdrowie
 [101638]
• Książkowe Klimaty
 [124]
• Zabawki
 [2473]
• Puzzle, gry
 [3898]
• Literatura w języku ukraińskim
 [254]
• Art. papiernicze i szkolne
 [8170]
Kategorie szczegółowe BISAC

Algorithmic Learning in a Random World

ISBN-13: 9780387001524 / Angielski / Twarda / 2005 / 324 str.

Gammerman; Alexander Gammerman; Alex Gammerman
Algorithmic Learning in a Random World Gammerman                                Alexander Gammerman Alex Gammerman 9780387001524 Springer - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Algorithmic Learning in a Random World

ISBN-13: 9780387001524 / Angielski / Twarda / 2005 / 324 str.

Gammerman; Alexander Gammerman; Alex Gammerman
cena 685,93 zł
(netto: 653,27 VAT:  5%)

Najniższa cena z 30 dni: 655,41 zł
Termin realizacji zamówienia:
ok. 22 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!

Algorithmic Learning in a Random World describes recent theoretical and experimental developments in building computable approximations to Kolmogorov's algorithmic notion of randomness. Based on these approximations, a new set of machine learning algorithms have been developed that can be used to make predictions and to estimate their confidence and credibility in high-dimensional spaces under the usual assumption that the data are independent and identically distributed (assumption of randomness). Another aim of this unique monograph is to outline some limits of predictions: The approach based on algorithmic theory of randomness allows for the proof of impossibility of prediction in certain situations. The book describes how several important machine learning problems, such as density estimation in high-dimensional spaces, cannot be solved if the only assumption is randomness.

Kategorie:
Informatyka, Bazy danych
Kategorie BISAC:
Computers > Artificial Intelligence - General
Computers > Computer Science
Mathematics > Prawdopodobieństwo i statystyka
Wydawca:
Springer
Język:
Angielski
ISBN-13:
9780387001524
Rok wydania:
2005
Wydanie:
2005
Ilość stron:
324
Waga:
0.69 kg
Wymiary:
24.28 x 16.26 x 2.41
Oprawa:
Twarda
Wolumenów:
01
Dodatkowe informacje:
Bibliografia
Wydanie ilustrowane

From the reviews:

"Algorithmic Learning in a Random World has ten chapters, three appendices, and extensive references. Each chapter ends with a section containing comments, historical discussion, and bibliographical remarks. ... The material is developed well and reasonably easy to follow ... . the text is very readable. ... is doubtless an important reference summarizing a large body of work by the authors and their graduate students. Academics involved with new implementations and empirical studies of machine learning techniques may find it useful too." (James Law, SIGACT News, Vol. 37 (4), 2006)

Preface.- List of Principal results.- Introduction.- Conformal prediction.- Classification with conformal predictors.-Modifications of conformal predictors.- Probabilistic prediction I: impossibility results.- Probabilistic prediction II: Venn predictors.- Beyond exchangeability.- On-line compression modeling I: conformal prediction.- On-line compression modeling II: Venn prediction.- Perspectives and contrasts.- Appendix A: Probability theory.- Appendix B: Data sets.- Appendix C: FAQ.- Notation.- References.- Index

Conformal prediction is a valuable new method of machine learning. Conformal predictors are among the most accurate methods of machine learning, and unlike other state-of-the-art methods, they provide information about their own accuracy and reliability.

This new monograph integrates mathematical theory and revealing experimental work. It demonstrates mathematically the validity of the reliability claimed by conformal predictors when they are applied to independent and identically distributed data, and it confirms experimentally that the accuracy is sufficient for many practical problems. Later chapters generalize these results to models called repetitive structures, which originate in the algorithmic theory of randomness and statistical physics. The approach is flexible enough to incorporate most existing methods of machine learning, including newer methods such as boosting and support vector machines and older methods such as nearest neighbors and the bootstrap.

Topics and Features:

    * Describes how conformal predictors yield accurate and reliable predictions,    complemented with quantitative measures of their accuracy and reliability

    * Handles both classification and regression problems

    * Explains how to apply the new algorithms to real-world data sets

    * Demonstrates the infeasibility of some standard prediction tasks

    * Explains connections with Kolmogorov’s algorithmic randomness, recent work in machine learning, and older work in statistics

   * Develops new methods of probability forecasting and shows how to use them for prediction in causal networks

 

Researchers in computer science, statistics, and artificial intelligence will find the book an authoritative and rigorous treatment of some of the most promising new developments in machine learning. Practitioners and students in all areas of research that use quantitative prediction or machine learning will learn about important new methods.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia