I Gruppen. Halbgruppen.- Gruppen.- Untergruppen.- Normalteiler und Faktorgruppen.- Zyklische Gruppen.- Gruppenoperationen.- Die Sätze von Sylow.- Symmetrische und alternierende Gruppen.- Der Hauptsatz über endliche abelsche Gruppen.- Auflösbare Gruppen.- Freie Gruppen *. II Ringe. Grundbegriffe der Ringtheorie.- Polynomringe.- Ideale.- Teilbarkeit in Integritätsbereichen.- Faktorielle Ringe.- Hauptidealringe. Euklidische Ringe.- Zerlegbarkeit in Polynomringen und noethersche Ringe. III Körper. Grundlagen der Körpertheorie.- Einfache und algebraische Körpererweiterungen.- Konstruktionen mit Zirkel und Lineal *.- Transzendente Körpererweiterungen *.- Algebraischer Abschluss. Zerfällungskörper.- Separable Körpererweiterungen.- Endliche Körper.- Die Galoiskorrespondenz.- Der Zwischenkörperverband einer Galoiserweiterung *.- Kreisteilungskörper.- Auflösung algebraischer Gleichungen durch Radikale.- Die allgemeine Gleichung. IV Moduln. Moduln *. V Anhang.
Prof. Dr. Christian Karpfinger lehrt an der Technischen Universität München; 2004 erhielt er den Landeslehrpreis des Freistaates Bayern.
Prof. Dr. Kurt Meyberg war Professor an der Technischen Universität München und ist als Autor verschiedener Lehrbücher bekannt.
Dieses Lehrbuch zur Algebra bietet eine Einführung in die grundlegenden Begriffe und Methoden der modernen Algebra. Es werden die Themen eines Grundkurses zur Algebra ausführlich und motivierend behandelt.
Die Algebra wird von vielen Studierenden als sehr abstrakt empfunden. Daher haben sich die Autoren bemüht, die Ergebnisse und Begriffe mit zahlreichen Beispielen zu unterlegen. Die Beweisführungen sind ausführlich, gelegentlich werden sogar verschiedene Beweise aufgezeigt. Die Kapitel sind in kleine Lerneinheiten unterteilt. Diese Lerneinheiten führen Schritt für Schritt an die Ergebnisse heran und können durch diese Darstellung vom Leser besser nachvollzogen werden. Die Autoren haben stets darauf geachtet, dass erst dann neue Begriffe und Konzepte eingeführt werden, wenn ein gewisses Vertrauen im Umgang mit den bis dahin entwickelten Begriffen und Konzepten besteht. Das Vorgehen wird stets motiviert, schwierige Sachverhalte werden ausführlich erklärt und an Beispielen erprobt. Der Leser erhält dadurch einen einfachen Zugang zu dem nicht ganz leichten Thema der Algebra.
Die zahlreichen Aufgaben unterschiedlicher Schwierigkeitsgrade zum Ende der Kapitel überprüfen das Gelernte und fördern das tiefere Verständnis der Theorie.
Das Buch wurde für die 5. Auflage vollständig durchgesehen und um einen ausführlichen Abschnitt zum semidirekten Produkt von Gruppen erweitert. Zudem wurden Lösungsmethoden inklusive Beispiele für manche typischen Aufgabenstellungen übersichtlich zusammengestellt, z.B. zum Nachweis der Reduzibilität bzw. Irreduzibilität von Polynomen.
Die Autoren
Prof. Dr. Christian Karpfinger lehrt an der Technischen Universität München; 2004 erhielt er den Landeslehrpreis des Freistaates Bayern.
Prof. Dr. Kurt Meyberg war Professor an der Technischen Universität München und ist als Autor verschiedener Lehrbücher bekannt.