ISBN-13: 9783030260248 / Angielski / Twarda / 2019 / 454 str.
ISBN-13: 9783030260248 / Angielski / Twarda / 2019 / 454 str.
Introduction ………………………………………………………………………………………………..
References …………………………………………………………………………………………………..
1 Sinter Production …………………………………………………………………………………………...
1.1 General Information about the Sintering Process ………………………………………………..………
References …………………………………………………………………………………………………..
1.2 Raw Materials of the Sintering Process ………………………………………………………………….
References …………………………………………………………………………………………………..
1.3 Preparation of Charge Components for Sintering ………………………………………………………..
1.3.1 Dosing of the Components of the Sinter Charge ……………………………………………….
1.3.2 Pelletizing of the Sinter Charge …………………………………………………………………
References …………………………………………………………………………………………………..1.4 Mass Exchange Processes in the Sintering Layer ………………………………………………………..
1.4.1 Chemical Reactions with Participation of Solid Phases ………………………………………..
1.4.2 Processes in the Formation of the Liquid Phase during Melting ……………………………….
1.4.3 Processes during Solidification (crystallization) of the Melt …………………………………..
References …………………………………………………………………………………………………..
1.5 Heat Transfer in the Sintering Layer …………………………….............................................................
1.5.1 General Information on the Sintering Heat Exchange ………………………………………….
1.5.2 Zonal Heat Balances of Sintered Layer …………………………………………………………
1.5.3 Mathematical Model of Heat Exchange during Sintering ………………………………………
1.5.4 Three-Dimensional Mathematical Model of the Sintering Process …………………………….
1.5.5 Calculation of the Specific Yield of the Sintering Gas …………………………………………
1.5.6 Vertical Sintering Speed ……………………………………………………………………….
References …………………………………………………………………………………………………..
1.6 The Gas Dynamics of the Sintering Process ………………………………………………………………
1.6.1 The Basic Equation of Dynamics of the Porous Layer ………………………………………….
1.6.2 Gas-dynamic Resistance Coefficients …………………………………………………………..
1.6.3 Porosity of the Sintering Layer ………………………………………………………………….
1.6.4 Gas Dynamics of Sintering Technology …………………………………………………………
1.6.5 Sintering Machine Performance …………………………………………………………………1.6.6 Ways to Improve the Performance of Sintering Machines ………………………………………
1.6.6.1 Modernization to Increase Sintering Capacities ……………………………………….
1.6.6.2 Increasing Sinter Yield …………………………………………………………………
1.6.6.3 Intensification of the Sintering Process ………………………………………………..
References ……………………………………………………………………………………………………..
1.7 Quality of the Sinter in Terms of Influence on the Performance of Blast Furnace Smelting ……………..
1.7.1 Sinter Quality Indicators …………………………………………………………………………
1.7.2 Influence of Sinter Quality on Gas-dynamic Parameters of Blast Furnace Smelting ……………
1.7.3 Requirements for Sinter Quality ………………………………………………………………….
1.7.4 Basic Solutions to Improve Quality of Sinter ……………………………………………………
1.7.4.1 Production of Low-silicon Sinter ………………………………………………………
1.7.4.2 Control of the Porous Structure of the Sinter ………………………………………….
1.7.4.3 Introduction of Low-melting Additives ……………………………………………….
1.7.4.4 Return Mode ……………………………………………………………………………1.7.4.5 Regulation of the Thermal Level of the Sintering Process …………………………….
1.7.5 Technology of Sintering under Pressure …………………………………………………………
References ………………………………………………………………………………………………………
1.8 Energy Efficiency of the Sintering Technology ……………………………………………………………
References ………………………………………………………………………………………………………
1.9 Environmental Aspects of Sinter Production (Best Available Technologies) ……………………………..
1.9.1 Thermodynamic Modeling of Emissions in the Sintering Process ……………………………….
1.9.2 Characteristics of Emissions from Sinter Production …………………………………………….
1.9.3 Influence of Technological Factors on the Emission of Pollutants during Sintering …………….
1.9.4 Environmental Requirements as the Main Priority of Production Modernization ……………….
1.9.5 Waste Gas Recirculation Concept ………………………………………………………………..
1.9.6 Recommendations on the Best Available Technologies (BAT) in Sintering …………………….
1.9.7 Sinter Plant without Chimney……………………………………………………………………..
References ………………………………………………………………………………………………….......
2 Pellets Production ……………………………………………………………………………………………
2.1 General Information about Pellets Production …………………………………………………………….
2.1.1 Technological Scheme of the Production of Pellets ……………………………………………….
2.1.2 Formation of Raw Pellets ………………………………………………………………………….
2.1.3 Strengthening of Raw Pellets ………………………………………………………………………
2.1.3.1 Pellet Drying …………………………………………………………………………………..
2.1.3.2 Roasting of Pellets ……………………………………………………………………………..
References ……………………………………………………………………………………………………..
2.2 Charge Components for the Production of Pellets ……………………………………………………………..
References ……………………………………………………………………………………………………….
2.3 Formation of Raw Pellets……………………………………………………………………………………
2.3.1 Interaction between Wetted Particles during the Formation of a Raw Pellet ……………………..
2.3.2 The Nature of the Action of Binding Additives in the Strengthening of Raw Pellets ……………..
2.3.3 The Effectiveness of Various Strengthening Additives in Pelletizing ……………………………..
References ………………………………………………………………………………………………………
2.4 Cold Bonded Pellets Production ……………………………………………………………………….. …
2.4.1 General Information about Cold Agglomeration ………………………………………………….
2.4.2 Strengthening Mechanism of Portland cement Binders …………………………………………..
2.4.3 Cold Strengthening under Normal Conditions ……………………………………………………
2.4.4 Cold Agglomeration at Moderate Temperatures …………………………………………………
2.4.5 Cold Agglomeration with Accelerated Strengthening …………………………………………….
2.4.6 Advantages of Cold Agglomeration Method ………………………………………………………
References ………………………………………………………………………………………………………
2.5 Strengthening Pellets with Thermal Methods................................................................................................
2.5.1 Phenomenology of Mass Transfer Processes during Heat Treatment of Pellets …………………..
2.5.2 Simulation of Mass Transfer Processes during Heat Treatment of Pellets ………………………..
2.5.3 Pellet Roasting as a Complicated Case of Sintering ……………………………………………….
2.5.3.1 The Main Laws of Sintering Kinetics ……………………………………………………
2.5.3.2 Sintering Mechanism of Iron Oxides ………………………………………………………
2.5.3.3 Characteristics of Iron Oxide Structure Defects ……………………………………………
2.5.3.4 Dependence of the Defectiveness of the Hematite Structure on the Genesis of Oxide ……
2.5.3.5 Defects in the Crystal Structure of Iron Oxides and Sintering Processes ………………….
2.5.4 The Pellet Macrostructure and Strength ……………………………………………………………
References ………………………………………………………………………………………………………
2.6 Metallurgical Properties of Iron Ore Pellets ……………….…………………………………………..…
2.6.1 Pellet Quality Test Methods ………………………………………………………………………….
2.6.2 Quality Requirements for Pellets …………………………………………………………………….
2.6.3 Basic Solutions for Improving the Quality of Pellets ………………………………………………..
2.6.3.1 Optimization of the Ratio of Fine and Coarse Fractions of the Concentrate …………………….
2.6.3.2 Minimization of the Zonal Structure of the Pellet ……………………………………………….
2.6.3.3 Introduction of Modifying Additives …………………………………………………………….
2.6.3.4 Oxide Structure Defect Management …………………………………………………………….
2.6.3.5 Regulation of Liquid-phase Sintering ………………………………………………………………
References …………………………………………………………………………………………………..
2.7 Resource Saving in the Production of Pellets ………………………………………………………………..
2.7.1 Resource Consumption in the Production of Pellets …………………………………………………..
2.7.2 Energy Efficiency of Conveyor Machines as Units for Pellets Roasting ……………………………………….
2.7.3 Best Available Technologies (BAT) in the Production of Pellets aimed at Improving Energy Efficiency..
2.7.3.1 General BAT Solutions ……………………………………………………………………………
2.7.3.2 Improving Thermal Schemes of Roasting Conveyor Machines ………………………………………
References ……………………………………………………………………………………………………………….
2.8 Environmental Aspectss of Pellets Production ………………………………………………………………………
2.8.1 General Characteristics of Emissions to the Environment in the Production of Pellets …………………….2.8.2 Sources of Emissions from Technological Operations in the Production of Pellets ……………………….
2.8.3 The Best Available Technology in the Production of Pellets ……………………………………………….
References ……………………………………………………………………………………………………………….
3.1 General Information on Briquetting of Natural and Anthropogenic Raw Materials …….………………………..
References ……………………………………………………………………………………………………………..
3.2 History of the Industrial Briquetting in Ferrous Metallurgy ………………………………………………………
3.2.1 Beginning of the 20th Century - the 20s of the 20th Century …………………..…………………………
3.2.2 30-50s of the 20th Century …………………………………………………………………………………
3.2.3 60-70s of the 20th Century …………………………………………………….…………………………..
3.2.4 The 80s - the end of the 20th Century …………………………………………………………………….
3.2.5 21st Century ……………………………………………………………………………………………….
References ……………………………………………………………………………………………………………..
3.3 Basic Materials for Briquetting ………………………………………………………………………..………….
References ……………………………………………………………………………………………………………..
3.4 Basic Industrial Technologies of Briquetting in Ferrous Metallurgy ………………………....…………………..
3.4.1 Briquetting Using Roller-presses ………………………………………………………………………….
3.4.2 Vibropressing for Briquetting …………………………………………………………………………….
3.4.2.1 The Physical Essence of Vibropressing and the Structure of the Briquette ………………………….
3.4.2.2 Technology of Vibropressing, Transportation, Heat Treatment and Storage of Briquettes …………
3.4.3 Stiff Vacuum Extrusion Briquetting Technology …………………………………………………………
3.4.3.1 Preparation of Burden Materials for SVE Briquetting ………………………………………………..
3.4.3.2 Technological Process of Briquetting by Method of Stiff Vacuum Extrusion ……………………….
3.4.3.3 The Movement of the Briquetted Mass in the Extruder ………………………………………………
References ………………………………………………………………………………………………………………
3.5 Requirements to metallurgical properties of briquettes ………………………………………………………..
3.5.1 Briquetting of natural and anthropogenic materials in blast furnace (BF) production …………………
3.5.1.1 Metallurgical Properties of Vibropressed Blast Furnace Briquettes …………………………….
3.5.1.2 Metallurgical Properties and Optimization of Extrusion Briquette (brex) Compositions
for Blast-furnace Production (Experimental Work) ………………………………………………..
3.5.1.3 Metallurgical Properties of Industrial Brex used as the Main Component of a Blast Furnace Charge …
3.5.1.4 Blast Furnace Operation with 100% Brex in Charge ………………………………………………..
3.5.1.5 Assessment of Prospects for the Use of Carbon-containing Briquettes from Iron Ore Concentrate
3.5.2 Briquetting of Natural and Anthropogenic Raw Materials for Ferroalloys Production ……………………
3.5.2.1 Metallurgical Properties of Brex on the Basis of Manganese Ore Concentrate ……………………….
3.5.2.2 Metallurgical Properties of Brex on the basis of Manganese Ore Concentrate and Baghouse
Dusts of Silicomanganese Production …………………………………………………………………
3.5.2.3 Full-scale Testing of Silicomanganese Smelting with Brex in the Charge of Submerged EAF ………
3.5.2.4 Metallurgical Properties of Briquettes on the Basis of Chromium-containing Materials …………….
3.5.3 Briquetting in Direct Reduced Iron (DRI) Production ……………………………………………………
References ………………………………………………………………………………………………………….
4 Best Available Technologies for Agglomeration of the Raw Materials for Blast Furnaces ………………………
4.1 Production of sinter as a BAT ……………………………………………………………………………………….
4.2 Production of pellets as a BAT ………………………………………………………………………………………
4.3 Stiff Extrusion Briquetting as a BAT ………………………………………………………………………………..
References ………………………………………………………………………………………………………………..
Chapter 1 Sinter Production
1.1 General information on the agglomeration process1.2 Raw components of agglomeration process (ore, flux, fuel)
1.3 Preparation of the components of the charge for sintering (crushing, batching, mixing, pelletizing)
1.4 Mass transfer processes in the sintered layer (types and kinetic characteristics of processes, models)
1.5 Heat transfer in sintered layer
1.6 Gas dynamics of the sintering process
1.7 Quality of sinter and its relationship with indicators of blast furnace smelting (main solutions to improve the quality of sinter)1.8 Brief description of sinter plant equipment
1.9 Energy efficiency of sintering technology
1.10 Environmental aspects of sinter production (best available technologies)
Chapter 2 Pellet production
2.1 General information on pellets production
2.2 Charge components for the production of pellets
2.3 Production of raw pellets (technologies, methods for improving strength characteristics)
2.4 Production of cold-bonded pellets (technology, resource conservation, quality indicators of fire-free pellets)
2.5 Mass transfer processes in the thermal strengthening of the pellets2.6 The metallurgical properties of the burnt pellets
2.7 Equipment of workshops for the production of pellets
2.8 Resource saving in the production of burnt pellets 2.9 Environmental aspects of the production of pellets (best available technology)
Chapter 3 Briquetting
3.1 General information on briquetting of natural and anthropogenic raw materials
3.2 Basic Materials for Briquetting
3.3 Main industrial technologies of briquetting
3.3.1. Briquetting using roller presses3.3.2. Vibropressing for briquetting
3.3.3. Stiff vacuum extrusion briquetting technology3.4 Requirements to metallurgical properties of briquettes
3.4.1 Briquetting of natural and anthropogenic raw materials in blast furnace production
3.4.2 Briquetting of natural and anthropogenic raw materials for ferroalloys production
3.4.3 Briquetting is the process of direct reduced iron production3.6
Chapter 4 Environmental aspects of briquetting by stiff extrusion (best available technologies)
Aitber Bizhanov. Was born on October 6 1956 in Buinaksk, Russia. Graduated from the Moscow Physical-Technical Institute in 1979. Aitber spent eleven years as a senior researcher with the Institute for High Temperatures, USSR Academy of Sciences, focusing on solar heat storage technologies. In 1992, he left academia, joining EVRAZ, a large, vertically integrated steel and vanadium enterprise with global assets. Following two years as Commercial Director and Executive Plant Director with ChTPZ-Complex Piping Systems, Aitber joined Kosaya Gora Iron Works in 2005 as Commercial Director, introducing a briquetting technology that used metallurgical wastes. Since then, he's worked on agglomeration and briquetting of the metallurgical wastes as Wastes Management Expert for HARSCO Metals. Today, Aitber is an Independent Representative of the J.C.Steele&Sons, Inc. Company in Russia&CIS, Eastern Europe and Turkey. Has Ph.D. degree in the agglomeration of natural and anthropogenic materials in metallurgy. Author of more than 60 publications and is owner and co-author of 14 Russian Patents in the field. Author and owner of the “BREX” trademark. With his personal participation, projects of briquetting of natural and anthropogenic raw materials of ferrous metallurgy were successfully implemented in a number of countries. Aitber is a member of Institute for Briquetting and Agglomeration (IBA) since 2011.
This book gives details on the processes of agglomeration and its role in modern metal production processes. It starts with a chapter on sinter production, also discussing the quality of sinter and environmental aspects involved on the process. The following chapters focus on pellet production and briquetting of natural and anthropogenic raw materials. It also highlights the best available technologies for briquetting by stiff extrusion.
1997-2024 DolnySlask.com Agencja Internetowa