• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Adversarial Machine Learning » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2939893]
• Literatura piękna
 [1808953]

  więcej...
• Turystyka
 [70366]
• Informatyka
 [150555]
• Komiksy
 [35137]
• Encyklopedie
 [23160]
• Dziecięca
 [608786]
• Hobby
 [136447]
• AudioBooki
 [1631]
• Literatura faktu
 [225099]
• Muzyka CD
 [360]
• Słowniki
 [2914]
• Inne
 [442115]
• Kalendarze
 [1068]
• Podręczniki
 [166599]
• Poradniki
 [468390]
• Religia
 [506548]
• Czasopisma
 [506]
• Sport
 [61109]
• Sztuka
 [241608]
• CD, DVD, Video
 [3308]
• Technologie
 [218981]
• Zdrowie
 [98614]
• Książkowe Klimaty
 [124]
• Zabawki
 [2174]
• Puzzle, gry
 [3275]
• Literatura w języku ukraińskim
 [260]
• Art. papiernicze i szkolne
 [7376]
Kategorie szczegółowe BISAC

Adversarial Machine Learning

ISBN-13: 9783031004520 / Angielski / Miękka / 2018 / 172 str.

Yevgeniy Tu;Murat Shi
Adversarial Machine Learning Yevgeniy Tu Murat Shi  9783031004520 Springer International Publishing AG - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Adversarial Machine Learning

ISBN-13: 9783031004520 / Angielski / Miękka / 2018 / 172 str.

Yevgeniy Tu;Murat Shi
cena 241,50
(netto: 230,00 VAT:  5%)

Najniższa cena z 30 dni: 231,29
Termin realizacji zamówienia:
ok. 22 dni roboczych.

Darmowa dostawa!

The increasing abundance of large high-quality datasets, combined with significant technical advances over the last several decades have made machine learning into a major tool employed across a broad array of tasks including vision, language, finance, and security. However, success has been accompanied with important new challenges: many applications of machine learning are adversarial in nature. Some are adversarial because they are safety critical, such as autonomous driving. An adversary in these applications can be a malicious party aimed at causing congestion or accidents, or may even model unusual situations that expose vulnerabilities in the prediction engine. Other applications are adversarial because their task and/or the data they use are. For example, an important class of problems in security involves detection, such as malware, spam, and intrusion detection. The use of machine learning for detecting malicious entities creates an incentive among adversaries to evade detection by changing their behavior or the content of malicius objects they develop. The field of adversarial machine learning has emerged to study vulnerabilities of machine learning approaches in adversarial settings and to develop techniques to make learning robust to adversarial manipulation. This book provides a technical overview of this field. After reviewing machine learning concepts and approaches, as well as common use cases of these in adversarial settings, we present a general categorization of attacks on machine learning. We then address two major categories of attacks and associated defenses: decision-time attacks, in which an adversary changes the nature of instances seen by a learned model at the time of prediction in order to cause errors, and poisoning or training time attacks, in which the actual training dataset is maliciously modified. In our final chapter devoted to technical content, we discuss recent techniques for attacks on deep learning, as well as approaches for improving robustness of deep neural networks. We conclude with a discussion of several important issues in the area of adversarial learning that in our view warrant further research. Given the increasing interest in the area of adversarial machine learning, we hope this book provides readers with the tools necessary to successfully engage in research and practice of machine learning in adversarial settings.

Kategorie:
Informatyka, Bazy danych
Kategorie BISAC:
Computers > Artificial Intelligence - General
Mathematics > Matematyka stosowana
Mathematics > Prawdopodobieństwo i statystyka
Wydawca:
Springer International Publishing AG
Język:
Angielski
ISBN-13:
9783031004520
Rok wydania:
2018
Dostępne języki:
Ilość stron:
172
Waga:
0.30 kg
Wymiary:
23.5 x 19.05 x 0.94
Oprawa:
Miękka
Dodatkowe informacje:
Wydanie ilustrowane

List of Figures.- Preface.- Acknowledgments.- Introduction.- Machine Learning Preliminaries.- Categories of Attacks on Machine Learning.- Attacks at Decision Time.- Defending Against Decision-Time Attacks.- Data Poisoning Attacks.- Defending Against Data Poisoning.- Attacking and Defending Deep Learning.- The Road Ahead.- Bibliography.- Authors' Biographies.- Index .

Yevgeniy Vorobeychik is an Associate Professor of Computer Science and Engineering at Washington University in Saint Louis. Previously, he was an Assistant Professor of Computer Science at Vanderbilt University. Between 2008 and 2010, he was a post-doctoral research associate at the University of Pennsylvania Computer and Information Science department. He received Ph.D. (2008) and M.S.E. (2004) degrees in Computer Science and Engineering from the University of Michigan, and a B.S. degree in Computer Engineering from Northwestern University. His work focuses on game theoretic modeling of security and privacy, adversarial machine learning, algorithmic and behavioral game theory and incentive design, optimization, agent-based modeling, complex systems, network science, and epidemic control. Dr. Vorobeychik received an NSF CAREER award in 2017, and was invited to give an IJCAI-16 early career spotlight talk. He was nominated for the 2008 ACM Doctoral Dissertation Award and received honorable mention for the 2008 IFAAMAS Distinguished Dissertation Award.

Murat Kantarcioglu is a Professor of Computer Science and Director of the UTD Data Security and Privacy Lab at The University of Texas at Dallas. Currently, he is also a visiting scholar at Harvard's Data Privacy Lab. He holds a B.S. in Computer Engineering from Middle East Technical University, and M.S. and Ph.D. degrees in Computer Science from Purdue University. Dr. Kantarcioglu's research focuses on creating technologies that can efficiently extract useful information from any data without sacrificing privacy or security. His research has been supported by awards from NSF, AFOSR, ONR, NSA, and NIH. He has published over 175 peer-reviewed papers. His work has been covered by media outlets such as The Boston Globe and ABC News, among others, and has received three best paper awards. He is also the recipient of various awards including NSF CAREER award, a Purdue CERIAS Diamond Award for academic excellence, the AMIA (American Medical Informatics Association) 2014 Homer R. Warner Award, and the IEEE ISI (Intelligence and Security Informatics) 2017 Technical Achievement Award presented jointly by IEEE SMC and IEEE ITS societies for his research in data security and privacy. He is also a Distinguished Scientist of ACM.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2026 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia