• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Advances in Computational Dynamics of Particles, Materials and Structures » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2939893]
• Literatura piękna
 [1808953]

  więcej...
• Turystyka
 [70366]
• Informatyka
 [150555]
• Komiksy
 [35137]
• Encyklopedie
 [23160]
• Dziecięca
 [608786]
• Hobby
 [136447]
• AudioBooki
 [1631]
• Literatura faktu
 [225099]
• Muzyka CD
 [360]
• Słowniki
 [2914]
• Inne
 [442115]
• Kalendarze
 [1068]
• Podręczniki
 [166599]
• Poradniki
 [468390]
• Religia
 [506548]
• Czasopisma
 [506]
• Sport
 [61109]
• Sztuka
 [241608]
• CD, DVD, Video
 [3308]
• Technologie
 [218981]
• Zdrowie
 [98614]
• Książkowe Klimaty
 [124]
• Zabawki
 [2174]
• Puzzle, gry
 [3275]
• Literatura w języku ukraińskim
 [260]
• Art. papiernicze i szkolne
 [7376]
Kategorie szczegółowe BISAC

Advances in Computational Dynamics of Particles, Materials and Structures

ISBN-13: 9780470749807 / Angielski / Twarda / 2012 / 710 str.

Jason Har; Kumar Tamma
Advances in Computational Dynamics of Particles, Materials and Structures Jason Har Kumar Tamma 9780470749807 John Wiley & Sons - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Advances in Computational Dynamics of Particles, Materials and Structures

ISBN-13: 9780470749807 / Angielski / Twarda / 2012 / 710 str.

Jason Har; Kumar Tamma
cena 711,20
(netto: 677,33 VAT:  5%)

Najniższa cena z 30 dni: 701,06
Termin realizacji zamówienia:
ok. 30 dni roboczych.

Darmowa dostawa!

This volume provides a comprehensive treatment of modern computational mechanics work in particle and continuum dynamics. The coverage encompasses classical Newtonian, Lagrangian, and Hamiltonian mechanics, as well as new and alternate contemporary approaches and their equivalences to address various problems in engineering sciences and physics.

Kategorie:
Technologie
Kategorie BISAC:
Science > Dynamika
Science > Fizyka matematyczna
Wydawca:
John Wiley & Sons
Język:
Angielski
ISBN-13:
9780470749807
Rok wydania:
2012
Ilość stron:
710
Waga:
1.30 kg
Wymiary:
24.89 x 19.3 x 2.79
Oprawa:
Twarda
Wolumenów:
01
Dodatkowe informacje:
Bibliografia

PREFACE xv

ACKNOWLEDGMENTS xxi

ABOUT THE AUTHORS xxiii

1 INTRODUCTION 1

1.1 Overview 1

1.2 Applications 13

2 MATHEMATICAL PRELIMINARIES 15

2.1 Sets and Functions 15

2.2 Vector Spaces 18

2.3 Matrix Algebra 24

2.4 Vector Differential Calculus 28

2.5 Vector Integral Calculus 32

2.6 Mean Value Theorem 33

2.7 Function Spaces 34

2.8 Tensor Analysis 38

PART I N–BODY DYNAMICAL SYSTEMS

3 CLASSICAL MECHANICS 57

3.1 Newtonian Mechanics 57

3.2 Lagrangian Mechanics 60

3.3 Hamiltonian Mechanics 91

4 PRINCIPLE OF VIRTUAL WORK 108

4.1 Virtual Work in N–Body Dynamical Systems 108

4.2 Vector Formalism: Newtonian Mechanics in N–Body Dynamical Systems 114

4.3 Scalar Formalisms: Lagrangian and Hamiltonian Mechanics in N–Body Dynamical Systems 116

5 HAMILTON S PRINCIPLE AND HAMILTON S LAW OF VARYING ACTION 121

5.1 Introduction 121

5.2 Variation of the Principal Function 122

5.3 Calculus of Variations 125

5.4 Hamilton s Principle 129

5.5 Hamilton s Law of Varying Action 133

6 PRINCIPLE OF BALANCE OF MECHANICAL ENERGY 141

6.1 Introduction 142

6.2 Principle of Balance of Mechanical Energy 142

6.3 Total Energy Representations and Framework in the Differential Calculus Setting 144

6.4 Appendix: Total Energy Representations and Framework in the Variational Calculus Setting 156

7 EQUIVALENCE OF EQUATIONS 163

7.1 Equivalence in the Lagrangian Form of D Alembert s Principle/Principle of Virtual Work 163

7.2 Equivalence in Hamilton s Principle or Hamilton s Law of Varying Action 165

7.3 Equivalence in the Principle of Balance of Mechanical Energy 166

7.4 Equivalence Relations Between Governing Equations 167

7.5 Conservation Laws 171

7.6 Noether s Theorem 171

PART II CONTINUOUS–BODY DYNAMICAL SYSTEMS

8 CONTINUUM MECHANICS 175

8.1 Displacements, Strains and Stresses 175

8.2 General Principles 197

8.3 Constitutive Equations in Elasticity 206

8.4 Virtual Work and Variational Principles 220

8.5 Direct Variational Methods for Two–Point Boundary–Value Problems 237

9 PRINCIPLE OF VIRTUAL WORK: FINITE ELEMENTS AND SOLID/STRUCTURAL MECHANICS 267

9.1 Introduction 267

9.2 Finite Element Library 301

9.3 Nonlinear Finite Element Formulations 343

9.4 Scalar Formalisms: Lagrangian and Hamiltonian Mechanics and Finite Element Formulations in Continuous–Body Dynamical Systems 350

10 HAMILTON′S PRINCIPLE AND HAMILTON′S LAW OF VARYING ACTION: FINITE ELEMENTS AND SOLID/STRUCTURAL MECHANICS 364

10.1 Introduction 364

10.2 Hamilton s Principle and Hamilton s Law of Varying Action in Elastodynamics 365

10.3 Lagrangian Mechanics Framework and Finite Element Formulations 370

10.4 Hamiltonian Mechanics Framework and Finite Element Formulations 400

11 PRINCIPLE OF BALANCE OF MECHANICAL ENERGY: FINITE ELEMENTS AND SOLID/STRUCTURAL MECHANICS 426

11.1 Introduction 427

11.2 Total Energy Representations and Framework in the Differential Calculus Setting and Finite Element
Formulations 429

11.3 Lagrangian Mechanics Framework in the Differential Calculus Setting and Finite Element Formulations 449

11.4 Hamiltonian Mechanics Framework in the Differential Calculus Setting and Finite Element Formulations 454

11.5 Appendix: Total Energy Representations and Framework in the Variational Calculus Setting and Finite Element Formulations 458

12 EQUIVALENCE OF EQUATIONS 475

12.1 Equivalence in the Principle of Virtual Work in Dynamics 475

12.2 Equivalence in Hamilton s Principle or Hamilton s Law of Varying Action 478

12.3 Equivalence in the Principle of Balance of Mechanical Energy 482

12.4 Equivalence of Strong and Weak Forms for Initial Boundary–Value Problems 483

12.5 Equivalence of the Semi–Discrete Finite Element Equations of Motion 487

12.6 Equivalence of Finite Element Formulations 488

12.7 Conservation Laws 490

PART III THE TIME DIMENSION

13 TIME DISCRETIZATION OF EQUATIONS OF MOTION: OVERVIEW AND CONVENTIONAL PRACTICES 495

13.1 Introduction 495

13.2 Single–Step Methods for First–Order Ordinary Differential Equations 500

13.3 Linear Multistep Methods 505

13.4 Second–Order Systems and Single Step and/or Equivalent LMS Methods: Brief Overview of Classical
Methods from Historical Perspectives and Chronological Developments 507

13.5 Symplectic–Momentum Conservation and Variational Time Integrators 527

13.6 Energy–Momentum Conservation and Time Integration Algorithms 536

14 TIME DISCRETIZATION OF EQUATIONS OF MOTION: RECENT ADVANCES 553

14.1 Introduction 553

14.2 Time Discretization and the Total Energy Framework: Linear Dynamic Algorithms and Designs – Generalized Single Step Single Solve [GSSSS] Unified Framework Encompassing LMS Methods 555

14.3 Time Discretization and the Total Energy Framework: Nonlinear Dynamics Algorithms and Designs – Generalized Single Step Single Solve [GSSSS] Framework Encompassing LMS Methods 578

14.4 Time Discretization and Total Energy Framework: N–Body Systems 632

14.5 Time Discretization and Total Energy Framework: Nonconservative/Conservative Mechanical Systems with Holonomic–Scleronomic Constraints 649

14.5.1 General Formulations 650

Exercises 662

REFERENCES 669

INDEX 681

Dr. Kumar K. Tamma is Professor in the Dept. of Mechanical Engineering, Institute of Technology, at the University of Minnesota. He is also Director of the Laboratory for Multi–scale Physics, Mechanics, Materials and Modeling.He has published over 170 research papers in leading archival journals in the field, and over 225 in refereed conference proceedings/book chapters, and national/international conference abstracts. His primary areas of research include computational mechanics with emphasis on multi–scale/multi–physics and fluid–thermal–structural interactions; structural dynamics and contact–impact–penetration; computational aspects of microscale/nanoscale heat transfer; composites and manufacturing processes and solidification and computational development of finite element technology and time dependent algorithms.

Dr. Jason Har is a Research Associate working with Professor Tamma at the University of Minnesota. He received his Ph.D from Georgia Tech. His areas of research are finite element developments, computational structural dynamics and mechanics.

Computational methods for the modeling and simulation of the dynamic response and behavior of particles, materials and structural systems have had a profound influence on science, engineering and technology. Complex science and engineering applications dealing with complicated structural geometries and materials that would be very difficult to treat using analytical methods have been successfully simulated using computational tools. With the incorporation of quantum, molecular and biological mechanics into new models, these methods are poised to play an even bigger role in the future.

Advances in Computational Dynamics of Particles, Materials and Structures not only presents emerging trends and cutting edge state–of–the–art tools in a contemporary setting, but also provides a unique blend of classical and new and innovative theoretical and computational aspects covering both particle dynamics, and flexible continuum structural dynamics applications.  It provides a unified viewpoint and encompasses the classical Newtonian, Lagrangian, and Hamiltonian mechanics frameworks as well as new and alternative contemporary approaches and their equivalences in [start italics]vector and scalar formalisms[end italics] to address the various problems in engineering sciences and physics.

Highlights and key features

  •  Provides practical applications, from a unified perspective, to both particle and continuum mechanics of flexible structures and materials
  • Presents new and traditional developments, as well as alternate perspectives, for space and time discretization 
  • Describes a unified viewpoint under the umbrella of Algorithms by Design for the class of linear multi–step methods
  • Includes fundamentals underlying the theoretical aspects and numerical developments, illustrative applications and practice exercises

The completeness and breadth and depth of coverage makes Advances in Computational Dynamics of Particles, Materials and Structures a valuable textbook and reference for graduate students, researchers and engineers/scientists working in the field of computational mechanics; and in the general areas of computational sciences and engineering.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2026 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia