1.- I Elliptic and Modular Functions.- §1. The Modular Group.- §2. The Modular Curve X(1).- §3. Modular Functions.- §4. Uniformization and Fields of Moduli.- §5. Elliptic Functions Revisited.- §6. q-Expansions of Elliptic Functions.- §7. q-Expansions of Modular Functions.- §8. Jacobi’s Product Formula for ?(?).- §9. Hecke Operators.- §10. Hecke Operators Acting on Modular Forms.- §11. L-Series Attached to Modular Forms.- Exercises.- II Complex Multiplication.- §1. Complex Multiplication over C.- §2. Rationality Questions.- §3. Class Field Theory — A Brief Review.- §4. The Hilbert Class Field.- §5. The Maximal Abelian Extension.- §6. Integrality of j.- §7. Cyclotomic Class Field Theory.- §8. The Main Theorem of Complex Multiplication.- §9. The Associated Grössencharacter.- §10. The L-Series Attached to a CM Elliptic Curve.- Exercises.- III Elliptic Surfaces.- §1. Elliptic Curves over Function Fields.- §2. The Weak Mordell-Weil Theorem.- §3. Elliptic Surfaces.- §4. Heights on Elliptic Curves over Function Fields.- §5. Split Elliptic Surfaces and Sets of Bounded Height.- §6. The Mordell-Weil Theorem for Function Fields.- §7. The Geometry of Algebraic Surfaces.- §8. The Geometry of Fibered Surfaces.- §9. The Geometry of Elliptic Surfaces.- §10. Heights and Divisors on Varieties.- §11. Specialization Theorems for Elliptic Surfaces.- §12. Integral Points on Elliptic Curves over Function Fields.- Exercises.- IV The Néron Model.- §1. Group Varieties.- §2. Schemes and S-Schemes.- §3. Group Schemes.- §4. Arithmetic Surfaces.- §5. Néron Models.- §6. Existence of Néron Models.- §7. Intersection Theory, Minimal Models, and Blowing-Up.- §8. The Special Fiber of a Néron Model.- §9. Tate’s Algorithm to Compute the Special Fiber.- §10. The Conductor of an Elliptic Curve.- §11. Ogg’s Formula.- Exercises.- V Elliptic Curves over Complete Fields.- §1. Elliptic Curves over ?.- §2. Elliptic Curves over ?.- §3. The Tate Curve.- §4. The Tate Map Is Surjective.- §5. Elliptic Curves over p-adic Fields.- §6. Some Applications of p-adic Uniformization.- Exercises.- VI Local Height Functions.- §1. Existence of Local Height Functions.- §2. Local Decomposition of the Canonical Height.- §3. Archimedean Absolute Values — Explicit Formulas.- §4. Non-Archimedean Absolute Values — Explicit Formulas.- Exercises.- Appendix A Some Useful Tables.- §3. Elliptic Curves over ? with Complex Multiplication.- Notes on Exercises.- References.- List of Notation.