• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Advanced Forecasting with Python: With State-of-the-Art-Models Including LSTMs, Facebook’s Prophet, and Amazon’s DeepAR » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946912]
• Literatura piękna
 [1852311]

  więcej...
• Turystyka
 [71421]
• Informatyka
 [150889]
• Komiksy
 [35717]
• Encyklopedie
 [23177]
• Dziecięca
 [617324]
• Hobby
 [138808]
• AudioBooki
 [1671]
• Literatura faktu
 [228371]
• Muzyka CD
 [400]
• Słowniki
 [2841]
• Inne
 [445428]
• Kalendarze
 [1545]
• Podręczniki
 [166819]
• Poradniki
 [480180]
• Religia
 [510412]
• Czasopisma
 [525]
• Sport
 [61271]
• Sztuka
 [242929]
• CD, DVD, Video
 [3371]
• Technologie
 [219258]
• Zdrowie
 [100961]
• Książkowe Klimaty
 [124]
• Zabawki
 [2341]
• Puzzle, gry
 [3766]
• Literatura w języku ukraińskim
 [255]
• Art. papiernicze i szkolne
 [7810]
Kategorie szczegółowe BISAC

Advanced Forecasting with Python: With State-of-the-Art-Models Including LSTMs, Facebook’s Prophet, and Amazon’s DeepAR

ISBN-13: 9781484271490 / Angielski / Miękka / 2021 / 296 str.

Joos Korstanje
Advanced Forecasting with Python: With State-of-the-Art-Models Including LSTMs, Facebook’s Prophet, and Amazon’s DeepAR Joos Korstanje 9781484271490 APress - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Advanced Forecasting with Python: With State-of-the-Art-Models Including LSTMs, Facebook’s Prophet, and Amazon’s DeepAR

ISBN-13: 9781484271490 / Angielski / Miękka / 2021 / 296 str.

Joos Korstanje
cena 251,57
(netto: 239,59 VAT:  5%)

Najniższa cena z 30 dni: 210,17
Termin realizacji zamówienia:
ok. 10-14 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!
Kategorie:
Informatyka, Bazy danych
Kategorie BISAC:
Computers > Artificial Intelligence - General
Computers > Languages - Python
Mathematics > Prawdopodobieństwo i statystyka
Wydawca:
APress
Język:
Angielski
ISBN-13:
9781484271490
Rok wydania:
2021
Ilość stron:
296
Waga:
0.54 kg
Wymiary:
25.4 x 17.78 x 1.68
Oprawa:
Miękka
Wolumenów:
01
Dodatkowe informacje:
Wydanie ilustrowane

PART I: Machine Learning for Forecasting


Chapter 1: Models for Forecasting
Chapter Goal: Explains the different categories of models that are relevant for forecasting in high level language
No pages: 10
Sub -Topics
1. Time series models
2. Supervised vs unsupervised models
3. Classification vs regression models
4. Univariate vs multivariate models

Chapter 2: Model Evaluation for Forecasting
Chapter Goal: Explains model evaluation with specific adaptations to keep in mind for forecasting
No pages: 15
Sub -Topics
1. Train test split
2. Cross validation for forecasting
3. Backtesting

PART II: Univariate Time Series Models

Chapter 3: The AR Model
Chapter Goal: explain the AR model (intuitively, mathematically and give python application with code and data set)
No pages: 8
Sub -Topics
1. Understanding AR model
2. Mathematical explanation of the AR model
3. Worked out Python forecasting example with the AR model

Chapter 4: The MA model
Chapter Goal: explain the MA model (intuitively, mathematically and give python application with code and data set)
No pages: 8
Sub -Topics
1. Understanding MA model
2. Mathematical explanation of the MA model
3. Worked out Python forecasting example with the MA model

Chapter 5: The ARMA model
Chapter Goal: explain the ARMA model (intuitively, mathematically and give python application with code and data set)
No pages: 8
Sub -Topics
1. Understanding ARMA model
2. Mathematical explanation of the ARMA model
3. Worked out Python forecasting example with the ARMA model

Chapter 6: The ARIMA model
Chapter Goal: Explains the ARIMA model (intuitively, mathematically and give python application with code and data set)
No pages: 8
Sub -Topics
1. Understanding ARIMA model
2. Mathematical explanation of the ARIMA model
3. Worked out Python forecasting example with the ARIMA model

Chapter 7: The SARIMA Model
Chapter Goal: Explains the SARIMA model (intuitively, mathematically and give python application with code and data set)
No pages: 8
Sub -Topics
1. Understanding SARIMA model
2. Mathematical explanation of the SARIMA model
3. Worked out Python forecasting example with the SARIMA model

PART III: Multivariate Time Series Models

Chapter 8: The VAR model
Chapter Goal: Explains the VAR model (intuitively, mathematically and give python application with code and data set)
No pages: 8
Sub -Topics
1. Understanding VAR model
2. Mathematical explanation of the VAR model
3. Worked out Python forecasting example with the VAR model

Chapter 9: The Bayesian VAR model
Chapter Goal: Explains the Bayesian VAR model (intuitively, mathematically and give python application with code and data set)
No pages: 8
Sub -Topics
1. Understanding Bayesian VAR model
2. Mathematical explanation of the Bayesian VAR model
3. Worked out Python forecasting example with the Bayesian VAR model

PART IV: Supervised Machine Learning Models

Chapter 10: The Linear Regression model
Chapter Goal: Explains the Linear Regression model (intuitively, mathematically and give python application with code and data set)
No pages: 8
Sub -Topics
1. Understanding Linear Regression model
2. Mathematical explanation of the Linear Regression model
3. Worked out Python forecasting example with the Linear Regression model

Chapter 11: The Decision Tree model
Chapter Goal: Explains the Decision Tree model (intuitively, mathematically and give Python application with code and data set)
No pages: 8
Sub -Topics
1. Understanding Decision Tree model
2. Mathematical explanation of the Decision Tree model
3. Worked out Python forecasting example with the Decision Tree model

Chapter 12: The k-Nearest Neighbors VAR model
Chapter Goal: explain the k-Nearest Neighbors (intuitively, mathematically and give python application with code and data set)
No pages: 8
Sub -Topics
1. Understanding k-Nearest neighbors model
2. Mathematical explanation of the k-Nearest neighbors model
3. Worked out Python forecasting example with the k-Nearest neighbors model

Chapter 13: The Random Forest Model
Chapter Goal: explain the Random Forest (intuitively, mathematically and give python application with code and data set)
No pages: 8
Sub -Topics
1. Understanding Random Forest model
2. Mathematical explanation of the Random Forest model
3. Worked out Python forecasting example with the Random Forest model

Chapter 14: The XGBoost model
Chapter Goal: Explains the XGBoost model (intuitively, mathematically and give python application with code and data set)
No pages: 10
Sub -Topics
1. Understanding XGBoost model
2. Mathematical explanation of the XGBoost model
3. Worked out Python forecasting example with the XGBoost model

Chapter 15: The Neural Network model
Chapter Goal: Explains the Neural Network model (intuitively, mathematically and give python application with code and data set)
No pages: 10
Sub -Topics
1. Understanding Neural Network model
2. Mathematical explanation of the Neural Network model
3. Worked out Python forecasting example with the Neural Network model

Part V: Advanced Machine and Deep Learning Models

Chapter 16: Recurrent Neural Networks
Chapter Goal: Explains Recurrent Neural Networks (intuitively, mathematically and give python application with code and data set)
No pages: 10
Sub -Topics
1. Understanding Recurrent Neural Networks
2. Mathematical explanation of Recurrent Neural Networks 
3. Worked out Python forecasting example with Recurrent Neural Networks 

Chapter 17: LSTMs
Chapter Goal: Explains LSTMs (intuitively, mathematically and give python application with code and data set)
No pages: 10
Sub -Topics
1. Understanding LSTMs
2. Mathematical explanation of LSTMs 
3. Worked out Python forecasting example with LSTMs 

Chapter 18: Facebook’s Prophet model
Chapter Goal: Explains Facebook’s Prophet model (intuitively, mathematically and give Python application with code and data set)
No pages: 10
Sub -Topics
1. Understanding Facebook’s Prophet model
2. Mathematical explanation of Facebook’s Prophet model
3. Worked out Python forecasting example with Facebook’s Prophet model

Chapter 19: Amazon’s DeepAR Model
Chapter Goal: Explains Amazon’s DeepAR model (intuitively, mathematically and give python application with code and data set)
No pages: 10
Sub -Topics
1. Understanding Amazon’s DeepAR model
2. Mathematical explanation of Amazon’s DeepAR model
3. Worked out Python forecasting example with Amazon’s DeepAR model

Chapter 20: Deep State Space Models
Chapter Goal: Explains Deep State Space models (intuitively, mathematically and give Python application with code and data set)
No pages: 10
Sub -Topics
1. Understanding Deep State Space models
2. Mathematical explanation of Deep State Space models
3. Worked out Python forecasting example with Deep State Space models

Chapter 21: Model selection
Chapter Goal: Give elements to select the best model for a specific situation
No pages: 16
Sub -Topics
1. Benchmark scores vs understandability of models vs compute time 
2. Black swan outlier problems
3. Automated retraining and updating of models
4. Conclusion


Joos is a data scientist, with over five years of industry experience in developing machine learning tools, of which a large part is forecasting models. He currently works at Disneyland Paris where he develops machine learning for a variety of tools. His experience in writing and teaching have motivated him to make this book on advanced forecasting with Python.


Cover all the machine learning techniques relevant for forecasting problems, ranging from univariate and multivariate time series to supervised learning, to state-of-the-art deep forecasting models such as LSTMs, recurrent neural networks, Facebook’s open-source Prophet model, and Amazon’s DeepAR model.

Rather than focus on a specific set of models, this book presents an exhaustive overview of all the techniques relevant to practitioners of forecasting. It begins by explaining the different categories of models that are relevant for forecasting in a high-level language. Next, it covers univariate and multivariate time series models followed by advanced machine learning and deep learning models. It concludes with reflections on model selection such as benchmark scores vs. understandability of models vs. compute time, and automated retraining and updating of models.

Each of the models presented in this book is covered in depth, with an intuitive simple explanation of the model, a mathematical transcription of the idea, and Python code that applies the model to an example data set.

Reading this book will add a competitive edge to your current forecasting skillset. The book is also adapted to those who have recently started working on forecasting tasks and are looking for an exhaustive book that allows them to start with traditional models and gradually move into more and more advanced models. 

You will:

  • Carry out forecasting with Python
  • Mathematically and intuitively understand traditional forecasting models and state-of-the-art machine learning techniques
  • Gain the basics of forecasting and machine learning, including evaluation of models, cross-validation, and back testing
  • Select the right model for the right use case



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia