• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Advanced Applied Deep Learning: Convolutional Neural Networks and Object Detection » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946912]
• Literatura piękna
 [1852311]

  więcej...
• Turystyka
 [71421]
• Informatyka
 [150889]
• Komiksy
 [35717]
• Encyklopedie
 [23177]
• Dziecięca
 [617324]
• Hobby
 [138808]
• AudioBooki
 [1671]
• Literatura faktu
 [228371]
• Muzyka CD
 [400]
• Słowniki
 [2841]
• Inne
 [445428]
• Kalendarze
 [1545]
• Podręczniki
 [166819]
• Poradniki
 [480180]
• Religia
 [510412]
• Czasopisma
 [525]
• Sport
 [61271]
• Sztuka
 [242929]
• CD, DVD, Video
 [3371]
• Technologie
 [219258]
• Zdrowie
 [100961]
• Książkowe Klimaty
 [124]
• Zabawki
 [2341]
• Puzzle, gry
 [3766]
• Literatura w języku ukraińskim
 [255]
• Art. papiernicze i szkolne
 [7810]
Kategorie szczegółowe BISAC

Advanced Applied Deep Learning: Convolutional Neural Networks and Object Detection

ISBN-13: 9781484249758 / Angielski / Miękka / 2019 / 285 str.

Umberto Michelucci
Advanced Applied Deep Learning: Convolutional Neural Networks and Object Detection Michelucci, Umberto 9781484249758 Apress - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Advanced Applied Deep Learning: Convolutional Neural Networks and Object Detection

ISBN-13: 9781484249758 / Angielski / Miękka / 2019 / 285 str.

Umberto Michelucci
cena 171,00
(netto: 162,86 VAT:  5%)

Najniższa cena z 30 dni: 170,53
Termin realizacji zamówienia:
ok. 16-18 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!
Kategorie:
Informatyka, Bazy danych
Kategorie BISAC:
Computers > Artificial Intelligence - General
Computers > Languages - Python
Computers > Programming - Open Source
Wydawca:
Apress
Język:
Angielski
ISBN-13:
9781484249758
Rok wydania:
2019
Dostępne języki:
Ilość stron:
285
Waga:
0.42 kg
Wymiary:
23.39 x 15.6 x 1.63
Oprawa:
Miękka
Dodatkowe informacje:
Wydanie ilustrowane

Chapter 1:  Introduction 

Chapter Goal: Describe the book, the python infrastructure, give instructions on how to setup a system for deep learning projects
No of pages    :  30-50
Sub -Topics
1. Goal of the book
2. Prerequisites
3. Python Jupyter Notebooks introduction
4. How to setup a computer to follow the book (docker image?)
5. Tips for Python development and libraries needed (numpy, matplotlib, etc.)
6. The problem of vectorization of code and calculations
7. Additional resources

Chapter 2:  Convolution Neural Networks
Chapter Goal: Describe what convolution is and build a simple network with convolution.
No of pages: 50-70
Sub -Topics
1. Overview of convolution
2. Computer vision – example
3. Edge detection with convolution
4. Application to sample images
5. Other convolution examples (horizontal edge detection, vertical edge detection, etc.)
6. Strided convolution
7. N-dimensional convolution
8. Simple neural network with convolution

Chapter 3:  ResNets, inception networks and other variants
Chapter Goal: Describe what resnet, alexnet, inception networks are and their application
No of pages: 30-50
Sub -Topics
1. ResNets introduction, development, etc.
2. Inception networks
3. Other architectures

Chapter 4:  More advanced networks
Chapter Goal: Describe the problem of more advanced algorithms, like siamese networks, triplet loss, neural style transfer
No of pages:  50-70
Sub -Topics
1. Siamese networks
2. Neural style transfer
3. Different cost functions: style, content and cost

Chapter 5:  Medical example with CNN (Cancer example) in collaboration with 4quant probably
Chapter Goal: Develop a cancer diagnosis CNN with a real dataset in collaboration with 4quant
No of pages: 30-50
Sub -Topics
1. 4quant description
2. Problem description
3. Dataset preparation and discussion
4. Network development
5. Optimization
6. Results

Chapter 6:  Recurrent Neural Networks – an introduction
Chapter Goal: explain what Recurrent neural networks are
No of pages: 30-50
Sub -Topics
1. Recurrent neural networks 
2. Time component in RNN
3. Different types of RNN
4. LSTM Networks

Chapter 7:  LSTM Networks – a more advanced discussion
Chapter Goal: Discuss in more details LSTM Networks 
No of pages: 50-60
Sub -Topics
1. Overview of LSTM networks
2. The mathematics behind them
3. A practical application

Chapter 8:  Recurrent Neural Networks and language 
Chapter Goal: Introduction on how to use RNN and language problem
No of pages: 30-50
Sub -Topics
1. Word embeddings and the problem of language modelling
2. Word2vec
3. A practical example

Chapter 9:  Sequence to sequence architecture
Chapter Goal: Introduce sequence to sequence architectures
No of pages: 30-50
Sub -Topics
1. Introduction to the architecture
2. Practical implementation tips
3. Real use case application 

Chapter 10:  A practical complete example: Speech recognition
Chapter Goal: in this chapter I will put together all that was explained before and do a real-life example ML project (with all aspects included) about speech recognition
No of pages: 30-50
Sub -Topics
1. A complete example on speech recognition – an introduction
2. Dataset discussion
3. Dataset preparation
4. The implementation

Umberto Michelucci studied physics and mathematics. He is an expert in numerical simulation, statistics, data science, and machine learning. In addition to several years of research experience at the George Washington University (USA) and the University of Augsburg (DE), he has 15 years of practical experience in the fields of data warehouse, data science, and machine learning. His last book Applied Deep Learning – A Case-Based Approach to Understanding Deep Neural Networks was published by Apress in 2018. He is very active in research in the field of artificial intelligence and publishes his research results regularly in leading journals and gives regular talks at international conferences.

He teaches as a lecturer at the Zurich University of Applied Sciences and at the HWZ University of Applied Sciences in Business Administration. He is also responsible for AI, research, and new technologies at Helsana Vesicherung AG.

He recently founded TOELT LLC, a company aiming to develop new and modern teaching, coaching, and research methods for AI, to make AI technologies and research accessible to everyone.

Develop and optimize deep learning models with advanced architectures. This book teaches you the intricate details and subtleties of the algorithms that are at the core of convolutional neural networks. In Advanced Applied Deep Learning, you will study advanced topics on CNN and object detection using Keras and TensorFlow. 

Along the way, you will look at the fundamental operations in CNN, such as convolution and pooling, and then look at more advanced architectures such as inception networks, resnets, and many more. While the book discusses theoretical topics, you will discover how to work efficiently with Keras with many tricks and tips, including how to customize logging in Keras with custom callback classes, what is eager execution, and how to use it in your models.

Finally, you will study how object detection works, and build a complete implementation of the YOLO (you only look once) algorithm in Keras and TensorFlow. By the end of the book you will have implemented various models in Keras and learned many advanced tricks that will bring your skills to the next level.


You will:

  • See how convolutional neural networks and object detection work
  • Save weights and models on disk
  • Pause training and restart it at a later stage
  • Use hardware acceleration (GPUs) in your code
  • Work with the Dataset TensorFlow abstraction and use pre-trained models and transfer learning
  • Remove and add layers to pre-trained networks to adapt them to your specific project
  • Apply pre-trained models such as Alexnet and VGG16 to new datasets



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia