• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Adaptive Learning of Polynomial Networks: Genetic Programming, Backpropagation and Bayesian Methods » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946600]
• Literatura piękna
 [1856966]

  więcej...
• Turystyka
 [72221]
• Informatyka
 [151456]
• Komiksy
 [35826]
• Encyklopedie
 [23190]
• Dziecięca
 [619653]
• Hobby
 [140543]
• AudioBooki
 [1577]
• Literatura faktu
 [228355]
• Muzyka CD
 [410]
• Słowniki
 [2874]
• Inne
 [445822]
• Kalendarze
 [1744]
• Podręczniki
 [167141]
• Poradniki
 [482898]
• Religia
 [510455]
• Czasopisma
 [526]
• Sport
 [61590]
• Sztuka
 [243598]
• CD, DVD, Video
 [3423]
• Technologie
 [219201]
• Zdrowie
 [101638]
• Książkowe Klimaty
 [124]
• Zabawki
 [2473]
• Puzzle, gry
 [3898]
• Literatura w języku ukraińskim
 [254]
• Art. papiernicze i szkolne
 [8170]
Kategorie szczegółowe BISAC

Adaptive Learning of Polynomial Networks: Genetic Programming, Backpropagation and Bayesian Methods

ISBN-13: 9780387312392 / Angielski / Twarda / 2006 / 336 str.

Nikolay Y. Nikolaev; Hitoshi Iba
Adaptive Learning of Polynomial Networks: Genetic Programming, Backpropagation and Bayesian Methods Nikolaev, Nikolay 9780387312392 Springer - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Adaptive Learning of Polynomial Networks: Genetic Programming, Backpropagation and Bayesian Methods

ISBN-13: 9780387312392 / Angielski / Twarda / 2006 / 336 str.

Nikolay Y. Nikolaev; Hitoshi Iba
cena 605,23 zł
(netto: 576,41 VAT:  5%)

Najniższa cena z 30 dni: 578,30 zł
Termin realizacji zamówienia:
ok. 22 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!
inne wydania

This book provides theoretical and practical knowledge for develop- ment of algorithms that infer linear and nonlinear models. It offers a methodology for inductive learning of polynomial neural network mod- els from data. The design of such tools contributes to better statistical data modelling when addressing tasks from various areas like system identification, chaotic time-series prediction, financial forecasting and data mining. The main claim is that the model identification process involves several equally important steps: finding the model structure, estimating the model weight parameters, and tuning these weights with respect to the adopted assumptions about the underlying data distrib- ution. When the learning process is organized according to these steps, performed together one after the other or separately, one may expect to discover models that generalize well (that is, predict well). The book off'ers statisticians a shift in focus from the standard f- ear models toward highly nonlinear models that can be found by con- temporary learning approaches. Speciafists in statistical learning will read about alternative probabilistic search algorithms that discover the model architecture, and neural network training techniques that identify accurate polynomial weights. They wfil be pleased to find out that the discovered models can be easily interpreted, and these models assume statistical diagnosis by standard statistical means. Covering the three fields of: evolutionary computation, neural net- works and Bayesian inference, orients the book to a large audience of researchers and practitioners.

Kategorie:
Informatyka, Internet
Kategorie BISAC:
Computers > Computer Science
Computers > Artificial Intelligence - General
Wydawca:
Springer
Seria wydawnicza:
Genetic and Evolutionary Computation
Język:
Angielski
ISBN-13:
9780387312392
Rok wydania:
2006
Numer serii:
000323830
Ilość stron:
336
Waga:
0.69 kg
Wymiary:
24.38 x 15.9 x 2.34
Oprawa:
Twarda
Wolumenów:
01
Dodatkowe informacje:
Bibliografia
Wydanie ilustrowane

From the reviews:

"This book describes induction of polynomial neural networks from data. ... This book may be used as a textbook for an advanced course on special topics of machine learning." (Jerzy W. Grzymala-Busse, Zentralblatt MATH, Vol. 1119 (21), 2007)

Inductive Genetic Programming.- Tree-Like PNN Representations.- Fitness Functions and Landscapes.- Search Navigation.- Backpropagation Techniques.- Temporal Backpropagation.- Bayesian Inference Techniques.- Statistical Model Diagnostics.- Time Series Modelling.- Conclusions.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia