• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Three clustering algorithms and their application to microarray data » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946912]
• Literatura piękna
 [1852311]

  więcej...
• Turystyka
 [71421]
• Informatyka
 [150889]
• Komiksy
 [35717]
• Encyklopedie
 [23177]
• Dziecięca
 [617324]
• Hobby
 [138808]
• AudioBooki
 [1671]
• Literatura faktu
 [228371]
• Muzyka CD
 [400]
• Słowniki
 [2841]
• Inne
 [445428]
• Kalendarze
 [1545]
• Podręczniki
 [166819]
• Poradniki
 [480180]
• Religia
 [510412]
• Czasopisma
 [525]
• Sport
 [61271]
• Sztuka
 [242929]
• CD, DVD, Video
 [3371]
• Technologie
 [219258]
• Zdrowie
 [100961]
• Książkowe Klimaty
 [124]
• Zabawki
 [2341]
• Puzzle, gry
 [3766]
• Literatura w języku ukraińskim
 [255]
• Art. papiernicze i szkolne
 [7810]
Kategorie szczegółowe BISAC

Three clustering algorithms and their application to microarray data

ISBN-13: 9783838347943 / Angielski / Miękka / 2010 / 96 str.

Francisco Javier Molina Lopez
Three clustering algorithms and their application to microarray data Francisco Javier Molina Lopez 9783838347943 LAP Lambert Academic Publishing - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Three clustering algorithms and their application to microarray data

ISBN-13: 9783838347943 / Angielski / Miękka / 2010 / 96 str.

Francisco Javier Molina Lopez
cena 218,66
(netto: 208,25 VAT:  5%)

Najniższa cena z 30 dni: 219,18
Termin realizacji zamówienia:
ok. 10-14 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!

In the context of medical diagnostics, an important problem is to find the genes that are correlated with given phenotypes. These genes may reveal insights to biological processes and may be used to predict the phenotypes associated to samples of RNA. To that end, two new clustering methods are presented and studied. Our first algorithm allows us to analyze cell evolution by observing how the state of every gene changes over time. Our second algorithm cluster genes whose expression profiles are similar by using a classification of the samples utilized in the microarray experiments. This classification is based upon one or more conditions that affect the composition of the samples analyzed. By using the label of the microarray experiments, extra information is provided to cluster genes. The research reported here on the first two algorithms presented consists of three parts: 1. testing our methods on artificial datasets sampled from the probabilistic models on which our methods are based, 2. using our methods on microarray expression datasets to cluster genes, 3. and comparing results from parts 1 and 2 with the results obtained by other clustering methods on the same datasets.

In the context of medical diagnostics, an important problem is to find the genes that are correlated with given phenotypes. These genes may reveal insights to biological processes and may be used to predict the phenotypes associated to samples of RNA. To that end, two new clustering methods are presented and studied. Our first algorithm allows us to analyze cell evolution by observing how the state of every gene changes over time. Our second algorithm cluster genes whose expression profiles are similar by using a classification of the samples utilized in the microarray experiments. This classification is based upon one or more conditions that affect the composition of the samples analyzed. By using the label of the microarray experiments,extra information is provided to cluster genes. The research reported here on the first two algorithms presented consists of three parts: 1. testing our methods on artificial datasets sampled from the probabilistic models on which our methods are based, 2. using our methods on microarray expression datasets to cluster genes, 3. and comparing results from parts 1 and 2 with the results obtained by other clustering methods on the same datasets.

Kategorie:
Nauka, Biologia i przyroda
Kategorie BISAC:
Science > Biologia i przyroda
Wydawca:
LAP Lambert Academic Publishing
Język:
Angielski
ISBN-13:
9783838347943
Rok wydania:
2010
Dostępne języki:
Angielski
Ilość stron:
96
Waga:
0.15 kg
Wymiary:
22.922.9 x 15.222.9 x 15.2 x 0
Oprawa:
Miękka
Wolumenów:
01

Francisco Javier Molina Lopez is a State Statistician at DGT.He has a Ph.D. of the Department of Mathematics-University of California: UCSC-UC Berkeley. He worked in UCSC as a teacher assistant during ten quarters and for the next courses: Pre-calculus, Calculus, Multivariable Calculus, Complex Analysis, Statistics.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia