• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Mining big annual statement datasets to predict highly lucrative companies using classification trees and forests » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946350]
• Literatura piękna
 [1816154]

  więcej...
• Turystyka
 [70666]
• Informatyka
 [151172]
• Komiksy
 [35576]
• Encyklopedie
 [23172]
• Dziecięca
 [611458]
• Hobby
 [135995]
• AudioBooki
 [1726]
• Literatura faktu
 [225763]
• Muzyka CD
 [378]
• Słowniki
 [2917]
• Inne
 [444280]
• Kalendarze
 [1179]
• Podręczniki
 [166508]
• Poradniki
 [469467]
• Religia
 [507199]
• Czasopisma
 [496]
• Sport
 [61352]
• Sztuka
 [242330]
• CD, DVD, Video
 [3348]
• Technologie
 [219391]
• Zdrowie
 [98638]
• Książkowe Klimaty
 [124]
• Zabawki
 [2382]
• Puzzle, gry
 [3525]
• Literatura w języku ukraińskim
 [259]
• Art. papiernicze i szkolne
 [7107]
Kategorie szczegółowe BISAC

Mining big annual statement datasets to predict highly lucrative companies using classification trees and forests

ISBN-13: 9783656658870 / Angielski / Miękka / 2014 / 104 str.

Jurij Weinblat
Mining big annual statement datasets to predict highly lucrative companies using classification trees and forests Jurij Weinblat   9783656658870 Grin Verlag Gmbh - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Mining big annual statement datasets to predict highly lucrative companies using classification trees and forests

ISBN-13: 9783656658870 / Angielski / Miękka / 2014 / 104 str.

Jurij Weinblat
cena 274,73
(netto: 261,65 VAT:  5%)

Najniższa cena z 30 dni: 270,99
Termin realizacji zamówienia:
ok. 16-18 dni roboczych.

Darmowa dostawa!

Master's Thesis from the year 2014 in the subject Economics - Statistics and Methods, grade: 1,0, University of Duisburg-Essen (Wirtschaftswissenschaften), course: Masterarbeit, language: English, abstract: In this thesis it is predicted if a regarded firm will grow extraordinary in the next year and maybe even become a big company in the medium term. This is crucial information for private investors and fund managers who need to decide whether they should invest in a certain firm. Companies like Apple and Amazon have shown in the past that people who recognized the potential of such companies and bought their shares have earned a lot of money. The prediction models, which are described in this paper, can also be used by politicians to identify companies which are eligible for funding. Because growing companies oftentimes hire many employees, it might be meaningful to facilitate their development process by selective subsidies to reduce unemployment. Furthermore, it is possible to question the prediction results of a financial analyst if he came to a different conclusion than a model. Since annual reports are often publically available for free, it is reasonable to take advantage of them for such a prediction. Additionally, various information providers maintain huge databases with annual reports. A big data approach promises to further improve accuracy of predictions. This paper introduces methods, which enable to generate knowledge out of these huge data sources to identify extraordinary lucrative firms. To generate these prediction models, a data mining approach is used which is based on the approved CRISP-DM proceeding model for data mining processes. CRISP-DM ensures comparability and the consideration of best practices. The prediction models are based on classification trees and forests because they have some very substantial advantages over other methods like neural networks, which are frequently used in literature. For instance, the underlying algorithms of

Kategorie:
Nauka, Ekonomia i biznes
Kategorie BISAC:
Business & Economics > Economics - General
Business & Economics > Statystyka gospodarcza
Wydawca:
Grin Verlag Gmbh
Język:
Angielski
ISBN-13:
9783656658870
Rok wydania:
2014
Ilość stron:
104
Waga:
0.14 kg
Wymiary:
21.01 x 14.81 x 0.64
Oprawa:
Miękka
Wolumenów:
01
Dodatkowe informacje:
Wydanie ilustrowane


Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2026 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia