ISBN-13: 9783540431176 / Angielski / Twarda / 2002 / 440 str.
ISBN-13: 9783540431176 / Angielski / Twarda / 2002 / 440 str.
Since 1995, the noncontact atomic force microscope (NC-AFM) has achieved remarkable progress. Based on nanomechanical methods, the NC-AFM detects the weak attractive force between the tip of a cantilever and a sample surface. This method has the following characteristics: it has true atomic resolution; it can measure atomic force interactions, i.e. it can be used in so-called atomic force spectroscopy (AFS); it can also be used to study insulators; and it can measure mechanical responses such as elastic deformation. This is the first book that deals with all of the emerging NC-AFM issues.
"This book gives a comprehensive overview of the state-of-the-art of this dynamic force microscopy technique in 20 chapters, each written by experts in the field. It covers the theoretical basis, as well as applications to semiconducting surfaces, ionic crystals, metal oxides, and organic molecular systems including thin films, polymers, and nucleic acids . . . There are unsolved questions about the mechanisms responsible for atomic resolution but, as this well-written book displays, there has been tremendous progress in basic understanding of the technique and fascinating new applications continue to arise . . . With an increased understanding of NC-AFM, as demonstrated in this book, we are certain to see further progress in the near future."
-Materials Today
1 Introduction.- 1.1 AFM in Retrospective.- 1.2 Present Status of NC-AFM.- 1.3 Future Prospects for NC-AFM.- References.- 2 Principle of NC-AFM.- 2.1 Basics.- 2.1.1 Relation to the Scanning Tunneling Microscope (STM).- 2.1.2 Atomic Force Microscope (AFM).- 2.1.3 Operating Modes of AFMs.- 2.1.4 Scanning Speed, Signal Bandwidth and Noise.- 2.2 The Four Additional Challenges Faced by AFM.- 2.2.1 Jump-to-Contact and Other Instabilities.- 2.2.2 Contribution of Long-Range Forces.- 2.2.3 Noise in the Imaging Signal.- 2.2.4 Non-Monotonic Imaging Signal.- 2.3 Frequency-Modulation AFM (FM-AFM).- 2.3.1 Experimental Setup.- 2.3.2 Applications.- 2.4 Relation between Frequency Shift and Forces.- 2.4.1 Generic Calculation.- 2.4.2 Frequency Shift for a Typical Tip—Sample Force.- 2.4.3 Calculation of the Tunneling Current for Oscillating Tips.- 2.5 Noise in Frequency-Modulation AFM.- 2.5.1 Generic Calculation.- 2.5.2 Noise in the Frequency Measurement.- 2.5.3 Optimal Amplitude for Minimal Vertical Noise.- 2.6 A Novel Force Sensor Based on a Quartz Tuning Fork.- 2.6.1 Quartz Versus Silicon as a Cantilever Material.- 2.6.2 Benefits in Clamping One of the Beams (qPlus Configuration).- 2.7 Conclusion and Outlook.- References.- 3 Semiconductor Surfaces.- 3.1 Instrumentation.- 3.2 Three-Dimensional Mapping of Atomic Force.- 3.3 Control of Atomic Force.- 3.4 Imaging Mechanisms for Si(100)2?l and Si(100)2?l:H.- 3.5 Surface Strain on an Atomic Scale.- 3.6 Low Temperature Image of Si(100) Clean Surface.- 3.7 Mechanical Control of Atom Position.- 3.8 Atom Identification Using Covalent Bonding Force.- 3.9 Charge Imaging with Atomic Resolution.- 3.10 Mechanical Atom Manipulation.- References.- 4 Bias Dependence of NC-AFM Images and Tunneling Current Variations on Semiconductor Surfaces.- 4.1 Experimental Conditions.- 4.2 Bias Dependence of NC-AFM Images for Si(lll)7?7.- 4.2.1 Mechanism of Inverted Atomic Corrugation.- 4.2.2 NC-AFM Imaging and Tunneling Current.- 4.3 NC-AFM Images for Ge/Si(lll).- 4.4 Concluding Remarks.- References.- 5 Alkali Halides.- 5.1 Introduction.- 5.1.1 Experimental Techniques.- 5.1.2 Relevant Forces.- 5.2 Imaging of Single Crystals.- 5.2.1 Sample Preparation.- 5.2.2 Atomic Corrugation.- 5.2.3 Imaging of Defects.- 5.2.4 Mixed Alkali Halide Crystals.- 5.3 Imaging of Thin Films.- 5.3.1 Preparation of Thin Films.- 5.3.2 Atomic Resolution at Low-Coordinated Sites.- 5.4 Radiation Damage.- 5.4.1 Metallization and Bubble Formation in CaF2.- 5.4.2 Monatomic Pits in KBr.- 5.5 Dissipation Measurements.- 5.5.1 Material and Site-Specific Contrast.- 5.5.2 Using Damping for Distance Control.- References.- 6 Atomic Resolution Imaging on Fluorides.- 6.1 Experimental Techniques.- 6.2 Tip Instabilities.- 6.3 Flat Surfaces.- 6.4 Step Edges.- References.- 7 Atomically Resolved Imaging of a NiO(001) Surface.- 7.1 Antiferromagnetic Nickel Oxide.- 7.2 Experimental Considerations.- 7.3 Morphology of the Cleaved Surface.- 7.4 Atomically Resolved Imaging Using Non-Coated and Fe-Coated Si Tips.- 7.5 Short-Range Magnetic Interaction.- 7.6 Analysis of the Cross-Section.- 7.7 Conclusion.- References.- 8 Atomic Structure, Order and Disorder on High Temperature Reconstructed ?-Al2O3(0001).- 8.1 The Clean Surface.- 8.2 Defect Formation upon Water Exposure.- 8.3 Self-Organized Formation of Nanoclusters.- References.- 9 NC-AFM Imaging of Surface Reconstructions and Metal Growth on Oxides.- 9.1 Introduction.- 9.2 l?l to 1?3 Phase Transition of TiO2(100).- 9.3 Surface Reconstructions of TiO2(110).- 9.4 The 1?2 Reconstruction of SnO2(110).- 9.5 Imaging Thin Film Alumina: NiAl(110)-Al2O3.- 9.6 Growth of Cu and Pd on $$ \alpha - Al_2 O_3 \left( \right) - \sqrt \times \sqrt R \pm 9^\circ $$.- 9.7 A Short-Range-Ordered Overlayer of K on TiO2(110).- 9.8 Conclusions.- References.- 10 Atoms and Molecules on TiO2(110) and CeO2(111) Surfaces.- 10.1 Background.- 10.2 Brief Description of Experiments.- 10.3 Surface Structures of TiO2(110).- 10.4 Adsorbed Atoms and Molecules on TiO2(110).- 10.4.1 Carboxylate Ions on TiO2(110).- 10.4.2 Hydrogen Adatoms on TiO2(110).- 10.5 Fluctuation of Acetate Ions on TiO2(110).- 10.6 Surface Structures of CeO2(111).- 10.7 Conclusions.- References.- 11 NC-AFM Imaging of Adsorbed Molecules.- 11.1 Nucleic Acid Bases on a Graphite Surface.- 11.2 Double-Stranded DNA on a Mica Surface.- 11.3 Alkanethiol on a Au(111) Surface.- References.- 12 Organic Molecular Films.- 12.1 AFM Imaging of Molecular Films.- 12.1.1 Fullerenes.- 12.1.2 Alkanethiol SAMs.- 12.1.3 Ferroelectric Molecular Films.- 12.2 Surface Potential Measurements.- 12.3 Technical Developments in NC-AFM Imaging of Molecules.- 12.4 Concluding Remarks.- References.- 13 Single-Molecule Analysis.- 13.1 Introduction.- 13.2 Molecules and Surface.- 13.3 Experimental Methods.- 13.4 Alkyl-Substituted Carboxylates.- 13.5 Numerical Simulation of Propiolate Topography.- 13.5.1 Sphere—Substrate Force.- 13.5.2 Sphere—Carboxylate Force.- 13.5.3 Cluster—Substrate Force.- 13.5.4 Cluster—Carboxylate Force.- 13.5.5 Simulated Topography.- 13.6 Fluorine-Substituted Acetates.- 13.7 Conclusions and Perspectives.- References.- 14 Low-Temperature Measurements: Principles, Instrumentation, and Application.- 14.1 Introduction.- 14.2 Microscope Operation at Low Temperatures.- 14.2.1 Drift.- 14.2.2 Noise.- 14.3 Instrumentation.- 14.4 Van der Waals Surfaces.- 14.4.1 HOPG(0001).- 14.4.2 Xenon.- 14.5 Nickel Oxide.- 14.6 Semiconductors.- 14.6.1 ??(z) Curves on Specific Atomic Sites.- 14.6.2 Tip-Dependent Atomic Scale Contrast.- 14.6.3 Tip-Induced Relaxation.- 14.7 Magnetic Force Microscopy at Low Temperatures.- 14.7.1 MFM Data Acquisition.- 14.7.2 Domain Structure of La0.7Ca0.3MnO3??.- 14.7.3 Vortices on YBa2Cu3O7??.- 14.8 Conclusions.- References.- 15 Theory of Non-Contact Atomic Force Microscopy.- 15.1 Introduction.- 15.2 Cantilever Dynamics.- 15.3 Theoretical Simulation of NC-AFM Images.- 15.4 Non-Contact Atomic Force Microscopy Images of Dynamic Surfaces.- 15.5 Effect of Tip on Image for the Si(100)2?l:H Surface.- 15.6 Effect of Tip on Surface Structure Change and its Relation to Dissipation.- 15.7 Conclusion and Outlook.- References.- 16 Chemical Interaction in NC-AFM on Semiconductor Surfaces.- 16.1 Introduction.- 16.2 First-Principles Calculation of Tip—Surface Chemical Interaction.- 16.3 Simulation of NC-AFM Images.- 16.4 Simulations on Various Surfaces.- 16.5 Tip-Induced Surface Relaxation on the GaAs(110) Surface.- 16.5.1 Vertical Scan Over an As Atom.- 16.5.2 Vertical Scan Over a Ga Atom.- 16.5.3 Relevance to Near-Contact STM Observations.- 16.5.4 Tip-Induced Surface Atomic Processes and Energy Dissipation in NC-AFM.- 16.6 Image Contrast on GaAs(110) for a Pure Si Tip: Distance Dependence.- 16.7 Effect of Tip Morphology on NC-AFM Images.- 16.7.1 Image Contrast for the Ga/Si Tip.- 16.7.2 Image Contrast for the As/Si Tip.- 16.8 Conclusion.- References.- 17 Contrast Mechanisms on Insulating Surfaces.- 17.1 Introduction.- 17.2 Model of AFM and Main Forces.- 17.2.1 Tip—Surface Setup.- 17.2.2 Forces.- 17.3 Simulating Scanning.- 17.3.1 The Surface.- 17.3.2 The Tip.- 17.3.3 Tip—Surface Interaction.- 17.3.4 Modelling Oscillations.- 17.3.5 Generating a Theoretical Surface Image.- 17.4 Applications.- 17.4.1 The Calcium Fluoride (111) Surface.- 17.4.2 Calcite: Surface Deformations During Scanning.- 17.5 Studying Surface and Defect Properties.- 17.6 Conclusions.- References.- 18 Analysis of Microscopy and Spectroscopy Experiments.- 18.1 Introduction.- 18.2 Basic Principles.- 18.2.1 Experimental Setup.- 18.2.2 Origin of the Frequency Shift.- 18.2.3 Calculation of the Frequency Shift.- 18.2.4 Frequency Shift for Conservative Tip—Sample Forces.- 18.3 Simulation of NC-AFM Images.- 18.3.1 Experimental NC-AFM Images of van der Waals Surfaces.- 18.3.2 Basic Principles of the Simulation Method.- 18.3.3 Applications of the Simulation Method.- 18.4 Dynamic Force Spectroscopy.- 18.4.1 Determining Forces from Frequencies.- 18.4.2 Analysis of Tip—Sample Interaction Forces.- 18.5 Conclusion.- References.- 19 Theory of Energy Dissipation into Surface Vibrations.- 19.1 Introduction.- 19.2 Possible Dissipation Mechanisms.- 19.2.1 Adhesion Hysteresis.- 19.2.2 Stochastic Dissipation.- 19.2.3 Other Mechanisms.- 19.3 Brownian Particle Mechanism of Energy Dissipation.- 19.3.1 Brownian Particle.- 19.3.2 Fluctuation—Dissipation Theorem.- 19.3.3 Oscillating Tip as a Brownian Particle.- 19.3.4 Energy Dissipated Per Oscillation Cycle.- 19.4 Nonequilibrium Considerations for NC-AFM Systems.- 19.4.1 Preliminary Remarks.- 19.4.2 Mixed Quantum—Classical Representation.- 19.4.3 Equation of Motion for the Tip.- 19.5 Estimation of Dissipation Energies in NC-AFM.- 19.6 Comparison with STM.- 19.7 Conclusions and Future Directions.- References.- 20 Measurement of Dissipation Induced by Tip—Sample Interactions.- 20.1 Introduction.- 20.2 Experimental Aspects of Energy Dissipation.- 20.3 Experimental Methods.- 20.4 Apparent Energy Dissipation.- 20.5 Velocity-Dependent Dissipation.- 20.5.1 Electric-Field-Mediated Joule Dissipation.- 20.5.2 Magnetic-Field-Mediated Joule Dissipation.- 20.5.3 Magnetic-Field-Mediated Dissipation.- 20.5.4 Brownian Dissipation.- 20.6 Hysteresis-Related Dissipation.- 20.6.1 Magnetic-Field-Induced Hysteresis.- 20.6.2 Hysteresis Due to Adhesion.- 20.6.3 Hysteresis Due to Atomic Instabilities.- 20.7 Dissipation Imaging with Atomic Resolution.- 20.8 Dissipation Spectroscopy.- 20.9 Conclusion.- References.
Since 1995, the noncontact atomic force microscope (NC-AFM) has achieved remarkable progress. Based on nanomechanical methods, the NC-AFM detects the weak attractive force between the tip of a cantilever and a sample surface. This method has the following characteristics: it has true atomic resolution; it can measure atomic force interactions, i.e. it can be used in so-called atomic force spectroscopy (AFS); it can also be used to study insulators; and it can measure mechanical responses such as elastic deformation. This is the first book that deals with all of the emerging NC-AFM issues.
1997-2025 DolnySlask.com Agencja Internetowa