• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Einführungskurs Höhere Mathematik: Grundlagen -- Beispiele -- Aufgaben » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2950560]
• Literatura piękna
 [1849509]

  więcej...
• Turystyka
 [71097]
• Informatyka
 [151150]
• Komiksy
 [35848]
• Encyklopedie
 [23178]
• Dziecięca
 [617388]
• Hobby
 [139064]
• AudioBooki
 [1657]
• Literatura faktu
 [228597]
• Muzyka CD
 [383]
• Słowniki
 [2855]
• Inne
 [445295]
• Kalendarze
 [1464]
• Podręczniki
 [167547]
• Poradniki
 [480102]
• Religia
 [510749]
• Czasopisma
 [516]
• Sport
 [61293]
• Sztuka
 [243352]
• CD, DVD, Video
 [3414]
• Technologie
 [219456]
• Zdrowie
 [101002]
• Książkowe Klimaty
 [124]
• Zabawki
 [2311]
• Puzzle, gry
 [3459]
• Literatura w języku ukraińskim
 [254]
• Art. papiernicze i szkolne
 [8079]
Kategorie szczegółowe BISAC

Einführungskurs Höhere Mathematik: Grundlagen -- Beispiele -- Aufgaben

ISBN-13: 9783322830326 / Niemiecki / Miękka / 2012 / 813 str.

Shermann K. Stein
Einführungskurs Höhere Mathematik: Grundlagen -- Beispiele -- Aufgaben Stein, Shermann K. 9783322830326 Vieweg+teubner Verlag - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Einführungskurs Höhere Mathematik: Grundlagen -- Beispiele -- Aufgaben

ISBN-13: 9783322830326 / Niemiecki / Miękka / 2012 / 813 str.

Shermann K. Stein
cena 413,81
(netto: 394,10 VAT:  5%)

Najniższa cena z 30 dni: 396,31
Termin realizacji zamówienia:
ok. 22 dni roboczych
Dostawa w 2026 r.

Darmowa dostawa!

Differentiation Das Ziel dieses Buches ist es, dem Studenten und dem Lehrer einen leicht lesbaren und abwechslungsreichen Text Die Differentiation transzendenter Funktionen wird an die Hand zu geben, der die wichtigsten Gebiete der Infi aus zwei Griinden sehr bald eingefiihrt. Zunachst sind die nitesimalrechnung in einer und in mehreren Variablen so transzendenten Funktionen fUr die praktischen Anwen einfach wie moglich darbietet. dungen wesentlich wichtiger als die Polynome. Zum zwei ten laBt sich die Idee des Grenzwertes an Hand der Ablei Viele Studenten beschaftigen sich mit hoherer Mathe tung des Sinus und der logarithrnischen Funktion wesent matik, ehe der eine"oder andere sich entschlieBt, Mathema lich deutlicher veranschaulichen, als dies bei der Ableitung tik als Hauptfach oder als Beruf auszuwahlen. Gerade des von Polynomen der Fall ist. (Dort namlich kann x ohne halb habe ich viele Beispiele und Dbungen zusammengestellt, Schwierigkeiten auch gleich Null sein.) sei es nun zur Anreicherung der Darstellung oder auch zur Unterhaltung des Lesers; jedenfalls aber, urn dem Studen Anwendungen ten den Zusammenhang zwischen mathematischen Konzep ten und der realen Welt moglichst umfassend zu erschlieBen. Zusatzlich zu den iiblichen geometrischen und physi Dies gilt etwa flir das Beispiel des Motors, die Ausschopfung kalischen Anwendungen enthiilt der Text zahlreiche Veran natiirlicher Ressourcen, Beispiele aus dem Wirtschaftsleben schaulichungen aus anderen Gebieten. In den Dbungen und oder der Weltraumfahrt.

Kategorie:
Technologie
Kategorie BISAC:
Technology & Engineering > Engineering (General)
Wydawca:
Vieweg+teubner Verlag
Język:
Niemiecki
ISBN-13:
9783322830326
Rok wydania:
2012
Wydanie:
Softcover Repri
Ilość stron:
813
Wymiary:
27.9 x 21.0
Oprawa:
Miękka
Wolumenów:
01

1 Die zwei Hauptprobleme der Infinitesimalrechnung.- 1.1 Die Berechnung der veränderlichen Geschwindigkeit.- Übungen.- 1.2 Die Berechnung des Weges bei veränderlicher Geschwindigkeit.- Übungen.- 1.3 Zusammenfassung.- Testaufgaben zu Kapitel 1.- Testfragen zur Algebra.- 2 Funktionen und ihre Schaubilder; der Anstieg einer Geraden.- 2.1 Funktionen.- Übungen.- 2.2 Die Wertetabelle und das Schaubild einer Funktion.- Übungen.- 2.3 Der Anstieg einer Geraden.- Übungen.- 2.4 Zusammenfassung.- Wichtige Ergebnisse.- Begriffe und Symbole.- Testaufgaben zu Kapitel 2.- Übungen zu Kapitel 2.- 3 Die Ableitung.- 3.1 Vier Variationen zu einem Thema.- Übungen.- 3.2 Die Ableitung eines Polynoms.- Übungen.- 3.3 Die Ableitung einer Funktion.- Übungen.- 3.4 Zusammenfassung.- Begriffe und Symbole.- Wichtige Ergebnisse.- Testaufgaben zu Kapitel 3.- Übungen zu Kapitel 3.- 4 Grenzwerte und stetige Funktionen.- 4.1 Überblick über die Exponentialfunktion.- Übungen.- 4.2 Die Zahl e.- Übungen.- 4.3 Der Grenzwert einer reellen Funktion.- Übungen.- 4.4 Mehr über Grenzwerte und die Zahl e.- Übungen.- 4.5 Trigonometrische Grundbegriffe.- Übungen.- 4.6 Der Grenzwert von (sin ?)/? für ? ? 0.- Übungen.- 4.7 Stetige Funktionen.- Übungen.- 4.8 Zusammenfassung.- Begriffe und Symbole.- Wichtige Ergebnisse.- Testaufgaben zur Exponentialfunktion.- Testaufgaben zur Trigonometrie.- Testaufgaben zu Kapitel 4.- Übungen zu Kapitel 4.- Übungen zu den Kapiteln 1 bis 4.- 5 Berechnung von Ableitungen.- 5.1 Einige Bezeichnungen für die Ableitung.- Übungen.- 5.2 Die Ableitung einer Konstanten, sowie von Sinus und Kosinus.- Übungen.- 5.3 Logarithmen im Überblick.- Übungen.- 5.4 Die Ableitung der Logarithmusfunktion.- Übungen.- 5.5 Die Ableitung der Summe, der Differenz und des Produktes von Funktionen.- Übungen.- 5.6 Die Ableitung des Quotienten zweier Funktionen.- Übungen.- 5.7 Zusammengesetzte Funktionen.- Übungen.- 5.8 Die Ableitung einer zusammengesetzten Funktion.- Übungen.- 5.9 Umkehrfunktionen.- Übungen.- 5.10 Die Ableitung von bx und xa.- Übungen.- 5.11 Die Ableitung der inversen trigonometrischen Funktionen.- Übungen.- 5.12 Zusammenfassung.- Begriffe und Symbole.- Wichtige Ergebnisse.- Testaufgaben zu Kapitel 5 (Rechnungen).- Testaufgaben zu Kapitel 5 (Begriffe).- Übungen zu Kapitel 5.- 6 Anwendungen der Ableitung.- 6.1 Der Satz von Rolle.- Übungen.- 6.2 Der Mittelwertsatz.- Übungen.- 6.3 Die relativen Größen von ex, xn und In x.- Übungen.- 6.4 Natürliches Wachstum und natürlicher Zerfall.- Übungen.- 6.5 Ableitungen und Grenzwerte: Die graphische Darstellung von Funktionen.- 6.6 Die zweite Ableitung und das Studium von Bewegungen.- Übungen.- 6.7 Das Vorzeichen der zweiten Ableitung und seine geometrische Bedeutung.- Übungen.- 6.8 Anwendungen der Maxima- und Minimarechnung.- Übungen.- 6.9 Das Differential.- Übungen.- 6.10 Die Regel von de L’Hospital.- Übungen.- 6.11 Zusammenfassung.- Wichtige Ergebnisse.- Begriffe und Symbole.- Testaufgaben zu Kapitel 6.- Testaufgaben zu den Kapiteln 1 bis 6 (Berechnungen).- Testaufgaben zu den Kapiteln 1 bis 6 (Begriffe).- Übungen zu den Kapiteln 1 bis 6.- 7 Das bestimmte Integral.- 7.1 Vier Abschätzungen.- Übungen.- 7.2 Die exakte Lösung der vier Probleme.- Übungen.- 7.3 Summationszeichen.- Übungen.- 7.4 Das bestimmte Integral über ein Intervall.- Übungen.- 7.5 Zusammenfassung.- Begriffe und Symbole.- Wichtige Ergebnisse.- Testaufgaben zu Kapitel 7.- Übungen zu Kapitel 7.- 8 Die Hauptsätze der Infinitesimalrechnung.- 8.1 Der erste Hauptsatz der Infinitesimalrechnung.- Übungen.- 8.2 Der zweite Hauptsatz der Infinitesimalrechnung.- Übungen.- 8.3 Beweis der beiden Hauptsätze.- Übungen.- 8.4 Stammfunktionen.- Übungen.- 8.5 Zusammenfassung.- Begriffe und Symbole.- Wichtige Ergebnisse.- Testaufgaben zu Kapitel 8.- Testaufgaben zu den Kapiteln 1 bis 8.- Übungen zu den Kapiteln 1 bis 8.- 9 Berechnung von Stammfunktionen.- 9.1 Einige Grundtatsachen.- Übungen.- 9.2 Die Substitutionsmethode.- Übungen.- 9.3 Die Verwendung einer Integraltafel.- Übungen.- 9.4 Substitution im bestimmten Integral.- Übungen.- 9.5 Partielle Integration.- Übungen.- 9.6 Berechnung der Integrale $$ \int {\frac{} {{(ax\, + \,b)^n }}} ,\,\int {\frac{} {{(ax\, + \,bx\, + \,c)^n }}} \,{\text}\,\int {\frac{{x\,dx}} {{(ax^2 \, + \,bx\, + \,c)^n }}} $$.- Übungen.- 9.7 Integration von rationalen Funktion: Partial-bruchzerlegungen.- Übungen.- 9.8 Integration von rationalen Funktionen in sin ? und cos ?.- Übungen.- 9.9 Trigonometrische und algebraische Substitutionen.- Übungen.- 9.10 Zusammenfassung.- Testaufgaben zu Kapitel 9.- Übungen zu Kapitel 9.- 10 Berechnung und Anwendungen bestimmter Integrale.- 10.1 Berechnung der Länge c(x) des Schnittes.- Übungen.- 10.2 Die Berechnung der Querschnittsfläche A(x).- Übungen.- 10.3 Berechnung von Flächen und Volumina mit Hilfe von Schnitten.- Übungen.- 10.4 Die Berechnung des Volumens eines Rotationskörpers aus seinen Schalen.- Übungen.- 10.5 Der Mittelwert einer Funktion über ein Intervall.- 10.6 Uneigentliche Integrale.- Übungen.- 10.7 Polarkoordinaten.- Übungen.- 10.8 Gleichungen in Parameterdarstellung.- Übungen.- 10.9 Bogenlänge und Geschwindigkeit auf einer Kurve.- Übungen.- 10.10 Fläche in Polarkoordinaten.- Übungen.- 10.11 Oberfläche eines Rotationskörpers.- Übungen.- 10.12 Die Abschätzung bestimmter Integrale.- Übungen.- 10.13 Zusammenfassung.- Begriffe und Symbole.- Testaufgaben zu Kapitel 10.- Übungen zu Kapitel 10.- 11 Anwendungen der Ableitung.- 11.1 Implizite Ableitung.- Übungen.- 11.2 Der Zusammenhang von Zuwachsraten.- Übungen.- 11.3 Zweite Ableitung und Krümmung einer Kurve.- Übungen.- 11.4 Das Newtonsche Näherungsverfahren zur Lösung einer Gleichung.- Übungen.- 11.5 Der Winkel zwischen einer Geraden und einer Tangente.- Übungen.- 11.6 Die hyperbolischen Funktionen.- Übungen.- 11.7 Zusammenfassung.- Begriffe und Symbole.- Wichtige Ergebnisse.- Testaufgaben zu Kapitel 11.- Übungen zu Kapitel 11.- 12 Partielle Ableitungen.- 12.1 Rechtwinkelige Koordinaten für den Raum.- Übungen.- 12.2 Der Graph einer Gleichung.- Übungen.- 12.3 Funktionen und ihre Graphen.- Übungen.- 12.4 Partielle Ableitungen.- Übungen.- 12.5 Die Differenz ?f und das Differential df.- Übungen.- 12.6 Die Kettenregeln.- Übungen.- 12.7 Kritische Punkte.- Übungen.- 12.8 Lokale Extreme und partielle Ableitungen zweiter Ordnung.- Übungen.- 12.9 Zusammenfassung.- Begriffe.- Testaufgaben zu Kapitel 12.- Übungen zu Kapitel 12.- 13 Bestimmte Integrale über ebene Gebiete.- 13.1 Das bestimmte Integral einer Funktion über ein ebenes Gebiet.- Übungen.- 13.2 Die Beschreibung ebener Gebiete durch Koordinaten.- Übungen.- 13.3 Die Berechnung von $$ \int\limits_R {f\left( P \right)dA} $$ in rechtwinkligen Koordinaten.- Übungen.- 13.4 Der Schwerpunkt einer ebenen Schicht.- Übungen.- 13.5 Die Berechnung von $$ \int\limits_R {f\left( P \right)dA} $$ in Polarkoordinaten.- Übungen.- 13.6 Zusammenfassung.- Begriffe und Symbole.- Testaufgaben zu Kapitel 13.- Übungen zu Kapitel 13.- 14 Reihen.- 14.1 Folgen.- Übungen.- 14.2 Reihen.- Übungen.- 14.3 Der Test für alternierende Reihen.- Übungen.- 14.4 Der Integraltest.- Übungen.- 14.5 Der Vergleichstest und der Quotiententest.- Übungen.- 14.6 Absolute Konvergenz.- Übungen.- 14.7 Das Rechnen mit Potenzreihen.- Übungen.- 14.8 Zusammenfassung.- Wichtige Ergebnisse.- Begriffe und Symbole.- Testaufgaben zu Kapitel 14.- Übungen zu Kapitel 14.- 15 Taylorsche Reihe und der Zuwachs einer Funktion.- 15.1 Höhere Ableitungen und der Zuwachs einer Funktion.- Übungen.- 15.2 Taylorsche Reihe.- Übungen.- 15.3 Die Differentialgleichung der harmonischen Bewegung.- Übungen.- 15.4 Der Fehler bei der Abschätzung eines bestimmten Integrals.- Übungen.- 15.5 Der binomische Lehrsatz für beliebige Exponenten.- Übungen.- 15.6 Die Taylorsche Reihe von f(x;y).- Übungen.- 15.7 Zusammenfassung.- Wichtige Ergebnisse.- Begriffe und Symbole.- Testaufgaben zu Kapitel 15.- Übungen zu Kapitel 15.- 16 Das Moment einer Funktion.- 16.1 Arbeit.- Übungen.- 16.2 Die Kraft auf einen Damm.- Übungen.- 16.3 Das Moment einer Funktion.- Übungen.- 16.4 Zusammenfassung.- Begriffe und Symbole.- Testaufgaben zu Kapitel 16.- Übungen zu Kapitel 16.- 17 Mathematische Modelle.- 17.1 Grundbegriffe der Wahrscheinlichkeitsrechnung.- Übungen.- 17.2 Wahrscheinlichkeitsverteilungen.- Übungen.- 17.3 Die Exponentialverteilung (Poissonverteilung) des zufälligen Verkehrs.- Übungen.- 17.4 Zusammenfassung.- Wichtige Ergebnisse.- Begriffe und Symbole.- Testaufgaben zu Kapitel 17.- Andere Modelle.- Übungen zu Kapitel 17.- 18 Bestimmte Integrale über räumliche Gebiete.- 18.1 Das bestimmte Integral einer Funktion über ein dreidimensionales Gebiet.- Übungen.- 18.2 Die Beschreibung räumlicher Gebiete in rechtwinkligen Koordinaten.- Übungen.- 18.3 Die Beschreibung räumlicher Gebiete in Zylinderkoordinaten oder Kugelkoordinaten.- Übungen.- 18.4 Berechnung von $$ \int\limits_R {f\left( P \right)dV} $$ in rechtwinkligen Koordinaten.- Übungen.- 18.5 Die Berechnung von $$ \int\limits_R {f\left( P \right)dV} $$ in Zylin-der-oder Kugelkoordinaten.- Übungen.- 18.6 Zusammenfassung.- Begriffe und Symbole.- Testaufgaben zu Kapitel 18.- Übungen zu Kapitel 18.- 19 Vektoralgebra.- 19.1 Vektoralgebra.- Übungen.- 19.2 Das Produkt eines Skalares mit einem Vektor.- Übungen.- 19.3 Das skalare Produkt zweier Vektoren.- Übungen.- 19.4 Geraden und Ebenen.- Übungen.- 19.5 Richtungsableitung und Gradient.- Übungen.- 19.6 Zwei- und dreidimensionale Determinanten.- Übungen.- 19.7 Das Vektorprodukt zweier räumlicher Vektoren.- Übungen.- 19.8 Zusammenfassung.- Begriffe und Symbole.- Wichtige Ergebnisse.- Testaufgaben zu Kapitel 19.- Übungen zu Kapitel 19.- 20 Die Ableitung einer Vektorfunktion.- 20.1 Die Ableitung einer Vektorfunktion.- Übungen.- 20.2 Die Eigenschaften der Ableitung einer Vektorfunktion.- Übungen.- 20.3 Der Beschleunigungsvektor.- Übungen.- 20.4 Die Einheitsvektoren T und N.- Übungen.- 20.5 Die skalaren Komponenten des Beschleunigungsvektors in Richtung von T und N.- Übungen.- 20.6 Niveaukurven und Niveauflächen.- Übungen.- 20.7 Oberflächenintegrale.- Übungen.- 20.8 Lagrange-Multiplikator.- Übungen.- 20.9 Zusammenfassung.- Begriffe und Symbole.- Testaufgaben zu Kapitel 20.- Übungen zu Kapitel 20.- 21 Integrale über skalare Felder und Vektorfelder.- 21.1 Vektorfelder und skalare Felder.- Übungen.- 21.2 Kurvenintegrale über skalare Felder und Vektorfelder.- Übungen.- 21.3 Das Integral über die Normalkomponente eines Vektorfeldes.- Übungen.- 21.4 Konservative Vektorfelder.- Übungen.- 21.5 Zusammenfassung.- Begriffe und Symbole.- Testaufgaben zur Kapitel 21.- Übungen zu Kapitel 21.- 22 Die Greensche Formel und ihre Verallgemeinerungen.- 22.1 Die Greensche Formel und ihre physikalische Bedeutung.- Übungen.- 22.2 Der Beweis der Greenschen Formel.- Übungen.- 22.3 Abbildung einer Ebene in eine andere Ebene.- Übungen.- 22.4 Vergrößerungen in der Ebene: Die Jacobi-Determinante.- Übungen.- 22.5 Der Gaußsche Satz.- Übungen.- 22.6 Satz von Stokes.- Übungen.- 22.7 Zusammenfassung.- Wichtige Ergebnisse.- Begriffe und Symbole.- Testaufgaben zu Kapitel 22.- Übungen zu Kapitel 22.- 23 Das Vertauschen von Grenzwerten.- 23.1 Die Gleichheit von fxy und fyx.- Übungen.- 23.2 Die Ableitung von $$ \int\limits_a^b {f\left( {x;y} \right)dx} $$ nach y.- Übungen.- 23.3 Differentiation und Integration von Potenzreihen.- Übungen.- 23.4 Das Vertauschen von Grenzwerten.- Übungen.- 23.5 Zusammenfassung.- Anhang A Die reellen Zahlen.- A.1 Addition und Multiplikation (die Körperaxiome).- A.2 Die Ordnungsaxiome.- A.3 Rationale und irrationale Zahlen.- Übungen.- A.4 Vollständigkeit der reellen Zahlen.- Übungen.- Anhang B Analytische Geometrie.- B.1 Analytische Geometrie und die Abstandsformeln.- Übungen.- B.2 Die Gleichungen einer Geraden.- Übungen.- B.3 Kegelschnitte.- Übungen.- B.4 Kegelschnitte in Polarkoordinaten.- Übungen.- Anhang C Theorie der Grenzwerte.- C.1 Exakte Definition eines Grenzwertes.- Übungen.- C.2 Beweis einiger Theoreme über Grenzwerte.- Übungen.- Anhang D Partialbrüche.- D.1 Partialbruchzerlegungen von rationalen Zahlen.- Übungen.- D.2 Partialbruchzerlegung von rationalen Funktionen.- Übungen.- Anhang E Unbestimmte Integrale, Stammfunktionen.- Lösungen ausgewählter, ungeradzahliger Übungen und Testaufgaben.- 1 Die zwei Hauptprobleme der Infinitesimalrechnung.- 2 Funktionen und ihre Schaubilder; der Anstieg einer Geraden.- 3 Die Ableitung.- 4 Grenzwerte und stetige Funktionen.- 5 Berechnung von Ableitungen.- 6 Anwendungen der Ableitung.- 7 Das bestimmte Integral.- 8 Die Hauptsätze der Infinitesimalrechnung.- 9 Berechnung von Stammfunktionen.- 10 Berechnung und Anwendung bestimmter Integrale.- 11 Anwendungen der Ableitung.- 12 Partielle Ableitungen.- 13 Bestimmte Integrale über ebene Gebiete.- 14 Reihen.- 15 Taylorsche Reihe und der Zuwachs einer Funktion.- 16 Das Moment einer Funktion.- 17 Mathematische Modelle.- 18 Bestimmte Integrale über räumliche Gebiete.- 19 Vektoralgebra.- 20 Die Ableitung einer Vektorfunktion.- 21 Integrale über skalare Felder und Vektorfelder.- 22 Die Greensche Formel und ihre Verallgemeinerung.- 23 Das Vertauschen von Grenzwerten.- Anhang A Die reellen Zahlen.- Anhang B Analytische Geometrie.- Anhang C Theorie der Grenzwerte.- Anhang D Partialbrüche.- Sachwortverzeichnis.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia