ISBN-13: 9781337093354 / Angielski / Miękka / 2017 / 1152 str.
ISBN-13: 9781337093354 / Angielski / Miękka / 2017 / 1152 str.
1. Tension, Compression, and Shear
Introduction to Mechanics of Materials. Problem-Solving Approach. Statics Review. Normal Stress and Strain. Mechanical Properties of Materials. Elasticity, Plasticity, and Creep. Linear Elasticity, Hooke's Law, and Poisson's Ratio. Shear Stress and Strain. Allowable Stresses and Allowable Loads. Design for Axial Loads and Direct Shear.
2. Axially Loaded Members.
Introduction. Changes in Lengths of Axially Loaded Members. Changes in Lengths under Nonuniform Conditions. Statically Indeterminate Structures. Thermal Effects, Misfits, and Prestrains. Stresses on Inclined Sections. Strain Energy. Impact Loading. Repeated Loading and Fatigue. Stress Concentrations. Nonlinear Behavior. Elastoplastic Analysis
3. Torsion.
Introduction. Torsional Deformations of a Circular Bar. Circular Bars of Linearly Elastic Materials. Nonuni-form Torsion. Stresses and Strains in Pure Shear. Relationship Between Moduli of Elasticity E and G. Trans-mission of Power by Circular Shafts. Statically Indeterminate Torsional Members. Strain Energy in Torsion and Pure Shear. Torsion of Noncircular Prismatic Shafts. Thin-Walled Tubes. Stress Concentrations in Tor-sion.
4. Shear Forces and Bending Moments.
Introduction. Types of Beams, Loads, and Reactions. Shear Forces and Bending Moments. Relationships Among Loads, Shear Forces, and Bending Moments. Shear-Force and Bending-Moment Diagrams.
5. Stresses in Beams (Basic Topics).
Introduction. Pure Bending and Nonuniform Bending. Curvature of a Beam. Longitudinal Strains in Beams. Normal Stress in Beams (Linearly Elastic Materials). Design of Beams for Bending Stresses. Nonprismatic Beams. Shear Stresses in Beams of Rectangular Cross Section. Shear Stresses in Beams of Circular Cross Section. Shear Stresses in the Webs of Beams with Flanges. Built-Up Beams and Shear Flow. Beams with Axial Loads. Stress Concentrations in Bending
6. Stresses in Beams (Advanced Topics).
Introduction. Composite Beams. Transformed-Section Method. Doubly Symmetric Beams with Inclined Loads. Bending of Unsymmetric Beams. The Shear-Center Concept. Shear Stresses in Beams of Thin-Walled Open Cross Sections. Shear Stresses in Wide-Flange Beams. Shear Centers of Thin-Walled Open Sections. Elastoplastic Bending.
7. Analysis of Stress and Strain.
Introduction. Plane Stress. Principal Stresses and Maximum Shear Stresses. Mohr's Circle for Plane Stress. Hooke's Law for Plane Stress. Triaxial Stress. Plane Strain.
8. Applications of Plane Stress (Pressure Vessels, Beams, and Combined Loadings).
Introduction. Spherical Pressure Vessels. Cylindrical Pressure Vessels. Maximum Stresses in Beams. Combined Loadings.
9. Deflections of Beams.
Introduction. Differential Equations of the Deflection Curve. Deflections by Integration of the Bending-Moment Equation. Deflections by Integration of the Shear-Force and Load Equations. Method of Superposition. Moment-Area Method. Nonprismatic Beams. Strain Energy of Bending. Castigliano's Theorem. Deflections Produced by Impact. Temperature Effects
10. Statically Indeterminate Beams.
Introduction. Types of Statically Indeterminate Beams. Analysis by the Differential Equations of the Deflection Curve. Method of Superposition. Temperature Effects. Longitudinal Displacements at the Ends of a Beam.
11. Columns.
Introduction. Buckling and Stability. Columns with Pinned Ends. Columns with Other Support Conditions. Columns with Eccentric Axial Loads. The Secant Formula for Columns. Elastic and Inelastic Column Behavior. Inelastic Buckling. Design Formulas for Columns.
References and Historical Notes.
Appendix A: Systems of Units and Conversion Factors.
Appendix B: Problem Solving.
Appendix C: Mathematical Formulas.Appendix D: Review of Centroids and Moments Of Inertia.
Appendix E: Properties Of Plane Areas.
Appendix F: Properties of Structural-Steel Shapes.
Appendix G: Properties of Structural Lumber.
Appendix H: Deflections and Slopes of Beams.
Appendix I
Gere, James
James M. Gere (1925-2008) earned his undergraduate and M.A. degrees in Civil Engineering from the Rensselaer Polytechnic Institute, where he worked as instructor and research associate. He was awarded one of the first NSF Fellowships and studied at Stanford, where he earned his Ph.D. He joined the faculty in Civil Engineering, beginning a 34-year career of engaging his students in mechanics, structural and earthquake engineering. Dr. Gere served as Department Chair and Associate Dean of Engineering and co-founded the John A. Blume Earthquake Engineering Center at Stanford. Dr. Gere also founded the Stanford Committee on Earthquake Preparedness. He was one of the first foreigners invited to study the earthquake-devastated city of Tangshan, China. Although he retired in 1988, Dr. Gere continued to be an active, valued member of the Stanford community. Known for his cheerful personality, athleticism and skill as an educator, Dr. Gere authored nine texts on engineering subjects starting with this leading book, MECHANICS OF MATERIALS, which was inspired by teacher and mentor Stephan P. Timoshenko. His other well-known textbooks, used in engineering courses around the world, include: THEORY OF ELASTIC STABILITY, co-authored with S. Timoshenko; MATRIX ANALYSIS OF FRAMED STRUCTURES and MATRIX ALGEBRA FOR ENGINEERS, both co-authored with W. Weaver; MOMENT DISTRIBUTION; EARTHQUAKE TABLES: STRUCTURAL AND CONSTRUCTION DESIGN MANUAL, co-authored with H. Krawinkler; and TERRA NON FIRMA: UNDERSTANDING AND PREPARING FOR EARTHQUAKES, co-authored with H. Shah. In 1986 he hiked to the base camp of Mount Everest, saving the life of a companion on the trip. An avid runner, Dr. Gere completed the Boston Marathon at age 48 in a time of 3:13. Dr. Gere is remembered as a considerate and loving man whose upbeat humor always made aspects of daily life and work easier.
Goodno, Barry
Barry John Goodno is Professor of Civil and Environmental Engineering at Georgia Institute of Technology. He joined the Georgia Tech faculty in 1974. He was an Evans Scholar and received his B.S. in Civil Engineering from the University of Wisconsin, Madison, and his M.S. and Ph.D. degrees in Structural Engineering from Stanford University. He holds a professional engineering license (P.E.) in Georgia, is a Distinguished Member of ASCE and an Inaugural Fellow of SEI and has held numerous leadership positions within ASCE. He is a member of the Engineering Mechanics Institute (EMI) of ASCE and is a past president of the ASCE Structural Engineering Institute (SEI) Board of Governors. He is also past-chair of the ASCE-SEI Technical Activities Division (TAD) Executive Committee and past-chair of the ASCE-SEI Awards Committee. In 2002, Dr. Goodno received the SEI Dennis L. Tewksbury Award for outstanding service to ASCE-SEI. He received the departmental award for Leadership in Use of Technology in 2013 for his pioneering use of lecture capture technologies in undergraduate statics and mechanics of materials courses at Georgia Tech. Dr. Goodno is also a member of the Earthquake Engineering Research Institute (EERI) and has held leadership positions within the NSF-funded Mid-America Earthquake Center (MAE), directing the MAE Memphis Test Bed Project. Dr. Goodno has carried out research, taught graduate courses and published extensively in areas of earthquake engineering and structural dynamics during his tenure at Georgia Tech. Like co-author and mentor James Gere, he has completed numerous marathons including qualifying for and running the Boston Marathon in 1987.
1997-2024 DolnySlask.com Agencja Internetowa