ISBN-13: 9781291203394 / Angielski / Miękka / 2012 / 484 str.
ISBN-13: 9781291203394 / Angielski / Miękka / 2012 / 484 str.
"Pattern-Based Constraint Satisfaction and Logic Puzzles" develops a pure logic, pattern-based perspective of solving the finite Constraint Satisfaction Problem (CSP), with emphasis on finding the "simplest" solution. Different ways of reasoning with the constraints are formalised by various families of "resolution rules," each of them carrying its own notion of simplicity. A large part of the book illustrates the power of the approach by applying it to various popular logic puzzles. It provides a unified view of how to model and solve them, even though they involve very different types of constraints: obvious symmetric ones in Sudoku, non-symmetric but transitive ones (inequalities) in Futoshiki, topological and geometric ones in Map colouring, Numbrix and Hidato, and even much more complex non-binary arithmetic ones in Kakuro. It also shows that the most familiar techniques for these puzzles can indeed be understood as mere application-specific presentations of the general rules.
"Pattern-Based Constraint Satisfaction and Logic Puzzles" develops a pure logic, pattern-based perspective of solving the finite Constraint Satisfaction Problem (CSP), with emphasis on finding the "simplest" solution. Different ways of reasoning with the constraints are formalised by various families of "resolution rules", each of them carrying its own notion of simplicity. A large part of the book illustrates the power of the approach by applying it to various popular logic puzzles. It provides a unified view of how to model and solve them, even though they involve very different types of constraints: obvious symmetric ones in Sudoku, non-symmetric but transitive ones (inequalities) in Futoshiki, topological and geometric ones in Map colouring, Numbrix and Hidato, and even much more complex non-binary arithmetic ones in Kakuro. It also shows that the most familiar techniques for these puzzles can indeed be understood as mere application-specific presentations of the general rules.