ISBN-13: 9781119646891 / Angielski / Twarda / 2022 / 312 str.
ISBN-13: 9781119646891 / Angielski / Twarda / 2022 / 312 str.
Preface xiiiAcknowledgments xviiDisclaimer xviiiAbout the Companion Website xixPart I Theory, Models, and Simulations 11 Introduction 31.1 How Did We Get Here? 31.2 Introductory Concepts for TL, OSL, and RPL 71.2.1 Equilibrium and Metastable States 71.2.2 Fermi-Dirac Statistics 81.2.3 Related Processes 101.3 Brief Overview of Modern Applications in Radiation Dosimetry 121.3.1 Personal Dosimetry 131.3.2 Medical Dosimetry 141.3.3 Space Dosimetry 151.3.4 Retrospective Dosimetry 161.3.5 Environmental Dosimetry 181.4 Bibliography of Luminescence Dosimetry Applications 182 Defects and Their Relation to Luminescence 192.1 Defects in Solids 192.1.1 Point Defects 192.1.2 Extended Defects 232.1.3 Non-Crystalline Materials 232.2 Trapping, Detrapping, and Recombination Processes 242.2.1 Excitation Probabilities 242.2.1.1 Thermal Excitation 242.2.1.2 Optical Excitation 282.2.2 Trapping and Recombination Processes 313 TL and OSL: Models and Kinetics 353.1 Rate Equations: OTOR Model 353.2 Analytical Solutions: TL Equations 383.2.1 First-Order Kinetics 383.2.2 Second-Order and General-Order Kinetics 413.2.3 Mixed-Order Kinetics 463.3 Analytical Solutions: OSL Equations 493.3.1 First-Order Kinetics 513.3.1.1 Expressions for CW-OSL 513.3.1.2 Expressions for LM-OSL 513.3.1.3 Expressions for POSL 523.3.1.4 Expressions for VE-OSL 543.3.2 Non-First-Order Kinetics 573.4 More Complex Models: Interactive Kinetics 573.4.1 Thermoluminescence 573.4.2 Optically Stimulated Luminescence 653.5 Trap Distributions 683.6 Quasi-Equilibrium (QE) 753.6.1 Numerical Solutions: No QE Assumption 753.6.2 P and Q Analysis 753.6.3 Analytical Solutions: No QE Assumption 783.7 Thermal and Optical Effects 813.7.1 Thermal Quenching 823.7.1.1 Mott-Seitz Model 823.7.1.2 Schön-Klasens Model 853.7.1.3 Tests for Thermal Quenching 873.7.2 Thermal Effects on OSL 893.7.2.1 Effects of Shallow Traps 893.7.2.2 Effects of Deep Traps: Thermally Transferred OSL (TT-OSL) 913.7.3 More Temperature Effects for TL and OSL 923.7.3.1 Phonon-coupling 933.7.3.2 Shallow Traps 933.7.3.3 Sub-Conduction Band Excitation 933.7.3.4 Random Local Potential Fluctuations (RLPF) 953.7.4 Optical Effects on TL 963.7.4.1 Bleaching 963.7.4.2 Phototransferred TL (PTTL) 1013.8 Tunneling, Localized and Semi-Localized Transitions 1043.8.1 Tunneling 1063.8.1.1 General Considerations 1063.8.1.2 Ground-State Tunneling 1073.8.1.3 Excited-State Tunneling 1103.8.1.4 Decay during Irradiation 1133.8.1.5 Effect of Tunneling on TL and OSL 1133.8.2 Localized and Semi-localized Transition Models 1153.8.2.1 Localized Transition Model 1153.8.2.2 Semi-Localized Transition Model 1163.8.2.3 Semi-Localized Transitions and the TL Glow Curve 1223.9 Master Equations 1234 RPL: Models and Kinetics 1254.1 Radiophotoluminescence and Its Differences with TL and OSL 1254.2 Background Considerations 1254.3 Buildup Kinetics 1284.3.1 Electronic Processes 1284.3.2 Ionic Processes 1304.3.3 More on Buildup Processes 1344.3.3.1 After Irradiation 1344.3.3.2 During Irradiation 1354.3.3.3 Temperature Dependence 1355 Analysis of TL and OSL Curves 1395.1 Analysis of TL Glow Curves 1395.2 Analytical Methods for TL 1405.2.1 Partial-Peak Methods 1405.2.1.1 A Single TL Peak with a Discrete Value for E t 1405.2.1.2 Multiple Overlapping Peaks, and Trap Energy Distributions143 5.2.2 Whole-Peak Methods 1505.2.3 Peak-Shape Methods 1535.2.4 Peak-Position Methods 1555.2.5 Peak-Fitting Methods 1595.2.5.1 Principles 1595.2.5.2 Peak Resolution 1625.2.5.3 CGCD Using More-Than-One Heating Rate 1635.2.5.4 Continuous Trap Distributions 1665.2.6 Calculation of s169 5.2.7 Potential Distortions to TL Glow Curves 1695.2.7.1 Thermal Contact 1705.2.7.2 Thermal Quenching 1715.2.7.3 Emission Spectra 1715.2.7.4 Self-Absorption 1755.2.8 Summary of Steps to Take using TL Curve Fitting 1765.2.9 Isothermal Analysis 1775.3 Analytical Methods for OSL 1805.3.1 Curve-Shape Methods 1805.3.1.1 Cw-osl 1805.3.1.2 Lm-osl 1815.3.2 Variable Stimulation Rate Methods: LM-OSL 1815.3.3 Curve-Fitting Methods 1845.3.3.1 The Curve Overlap Problem 1845.3.3.2 Simultaneous Fitting of LM-OSL Peaks Generated by Varying the Stimulation Rate 1865.3.4 How Can the Number of Traps Contributing to OSL Be Determined? 1875.3.4.1 t max -t stop Analysis 1875.3.4.2 Comparison with TL 1885.3.5 Variation with Stimulation Wavelength 1885.3.6 Trap Distributions 1895.3.7 Emission Wavelength 1925.3.8 Summary of Steps to Take using OSL Curve Fitting 1935.3.9 OSL due to Optically Assisted Tunneling 1935.3.10 Ve-osl 1956 Dependence on Dose 1976.1 TL, OSL, or RPL versus Dose 1976.2 Dependence on Dose 1976.2.1 OTOR Model 1976.2.1.1 Dose-Response Relationships: Linear, Supralinear, Superlinear, and Sublinear 1996.2.2 Interactive Models: Competition effects 2036.2.2.1 Competition during Irradiation 2036.2.2.2 Competition during Trap Emptying 2046.2.3 Spatial Effects 2086.2.4 Sensitivity and Sensitization 2126.2.5 High Dose Effects 2136.2.5.1 Loss of Sensitivity 2136.2.5.2 TL and OSL Changes in Shape 2156.2.6 Charged Particles, Tracks, and Track Interaction 2166.2.6.1 Dose and Fluence Dependence: Low Fluence 2186.2.6.2 High Fluence: Track Interaction 2206.2.7 Rpl 2256.2.7.1 Buildup during Irradiation: A Special Kind of Supralinearity 2256.2.7.2 Buildup after Irradiation: Linear Response to Dose 227Part II Experimental Examples: Luminescence Dosimetry Materials 2297 Thermoluminescence 2317.1 Introduction 2317.2 Lithium Fluoride 2327.2.1 LiF:Mg,Ti 2327.2.1.1 Structure and Defects 2327.2.1.2 TL Glow Curves 2337.2.1.3 TL Emission Spectra 2387.2.1.4 TL Glow-Curve Analysis 2397.2.1.5 Changes to the Glow-Curve Shape with Dose and Ionization Density 2417.2.1.6 Competition 2487.2.1.7 Photon Dose-Response Characteristics 2507.2.1.8 Charged-Particle Dose-Response Characteristics 2527.2.2 LiF:MCP 2547.2.2.1 Structure and Defects 2547.2.2.2 TL Glow Curves 2557.2.2.3 TL Emission Spectra 2567.2.2.4 TL Glow-Curve Analysis 2587.2.2.5 Changes to the Glow-Curve Shape with Dose and Ionization Density 2597.2.2.6 Photon Dose-Response Characteristics 2617.2.2.7 Charged-Particle Dose-Response Characteristics 2627.2.3 Approximately Right; Precisely Wrong 2638 Optically Stimulated Luminescence 2678.1 Introduction 2678.2 Aluminum Oxide 2688.2.1 Al2O3 :C 2688.2.1.1 Structure and Defects 2688.2.1.2 OSL Curves 2698.2.1.3 Emission and Excitation Spectra 2708.2.1.4 Temperature Dependence 2778.2.1.5 Photon Dose-Response Characteristics 2778.2.1.6 Charged-Particle Dose-Response Characteristics 2808.2.2 A Final Observation 2859 Radiophotoluminescence 2879.1 Introduction 2879.2 Phosphate Glass 2879.2.1 Ag-doped Phosphate Glass 2879.2.1.1 Formulation, Growth, and RPL Centers 2879.2.1.2 Emission and Excitation Spectra: RPL Decay Curves and Signal Measurement 2909.2.1.3 Buildup Curves: Temperature Dependence; UV Reversal 2949.2.1.4 Photon Dose-Response Characteristics 2989.2.1.5 Charged-Particle Dose-Response Characteristics 3029.2.2 Final Remarks Concerning RPL from Ag-doped Phosphate Glass 3059.3 Fluorescent Nuclear Track Detectors 3059.3.1 Al2O3 :C,Mg 3059.3.1.1 Introduction 3059.3.1.2 RPL in Al2O3 :C,Mg 3059.3.1.3 FNTD Imaging of Charged-Particle Tracks 3079.3.1.4 FNTD for Neutron Detection 3109.3.2 LiF 3129.3.2.1 RPL in LiF 3129.3.2.2 Fntd 3139.3.3 Alkali Phosphate Glass 3159.3.3.1 Fntd 31510 Some Examples of More Complex TL, OSL, and RPL Phenomena: The Aluminosilicates 31710.1 Introduction 31710.2 Feldspar 31810.2.1 Structure and Defects 31810.2.2 Energy Levels and Density of States 31910.2.3 Emission Spectra 32110.2.4 OSL Phenomena 32110.2.4.1 Band Diagram 32110.2.4.2 OSL Excitation Spectra 32210.2.4.3 OSL Curve Description 32410.2.5 TL Phenomena 33010.2.5.1 Glow-Curve Description 33010.2.5.2 TL Analysis 33210.2.6 RPL Phenomena 33510.2.6.1 RPL Emission and Excitation Spectra 33510.2.6.2 RPL Temperature Dependence 33610.2.7 What Can Be Concluded? 33710.3 Aluminosilicate Glass 33810.3.1 Structure and Composition 33910.3.2 OSL Phenomena 34010.3.2.1 OSL Curve Description 34010.3.2.2 OSL Excitation Spectrum 34210.3.2.3 OSL Fading 34410.3.2.4 Potential Uses in Radiation Dosimetry 34510.3.3 TL Phenomena 34610.3.3.1 Glow-Curve Description 34610.3.3.2 TL Emission Spectrum 34910.3.3.3 TL Analysis 34910.3.3.4 TL Fading 35110.3.3.5 Potential Uses in Radiation Dosimetry 35210.4 Final Remarks 35211 Concluding Remarks: The Possibilities for Imperfection Engineering 35511.1 The Importance of Defects 35511.1.1 The Ideal Luminescence Dosimeter 35511.1.2 How to Detect Defect Clustering and Tunneling 35811.1.2.1 E t and s Analysis 35811.1.2.2 TL and OSL Curve Shapes 35811.1.2.3 Fading 35911.1.2.4 Spectral Measurements 35911.2 The Prospects for "Designer" TLDs, OSLDs, and RPLDs 360References 361Index 381
Stephen W.S. McKeever is an Emeritus Regents Professor in the Department of Physics at Oklahoma State University in the United States. He has published over 200 peer-reviewed papers in the field of luminescence measurements for radiation dosimetry.
1997-2024 DolnySlask.com Agencja Internetowa