Termin realizacji zamówienia: ok. 22 dni roboczych.
Darmowa dostawa!
This book focuses on the chemistry of additives for high performance applications and a large number of chemical formulas are displayed in the text. The additives applications include:
Analysis and separation techniques, such as high performance liquid chromatography, for example ionic liquids.
Additives for electrical applications, such as capacitors, electrokinetic micropumps, lithium-ion batteries, and other battery types.
Additives for solar cells for control of the active layer nanomorphology are documented as are additives for electrolyte membranes, fuel cells, such as membrane exchange humidifiers and coolant additives.
Medical applications include high performance additives for the manufacture of scaffolds, controlled drug release, and nanofibers.
Additives for lubricants including the deposit control, anti-wear additives, fluid loss control additives in drilling applications.
Additives for concrete uses such as set retarders, curing accelerators, defoamers, permeability control additives, and corrosion protection additives.
3.1.9 Static Cell Seeding Versus Vacuum Cell Seeding 154
3.1.10 Controlled Drug Release 155
References 156
4 Lubricants 159
4.1 Fuels 159
4.1.1 Graphene Oxide 159
4.1.2 Deposit Control 160
4.2 Lubricant Additives 161
4.2.1 GL Ratings 161
4.2.2 Organophosphates 162
4.2.3 Crankcase Oils 162
4.2.4 Low Sulfur and Low Metal Additive Formulations 163
4.2.5 Lithium Soaps 166
4.2.6 Titanium Complex Grease Composition 171
4.2.7 Improving theWetting Properties of Ionic Liquids 176
4.3 Anti–Wear Additives 179
4.3.1 Ionic Liquids 179
4.3.2 Castor Oil Tris(diphenyl phosphate) 179
4.3.3 Bifunctional Hairy Silica Nanoparticles 180
4.3.4 Boron Thiophosphite 180
4.3.5 Hydroxyaromatic Compounds 181
4.4 Fluid Loss Control Additives 183
4.4.1 Graphene Oxide 183
4.4.2 Montmorillonite 183
4.5 Warm Mix Asphalt Additives 184
5 Concrete Additives 189
5.1 Properties of Concrete 189
5.1.1 Pozzolans 191
5.1.2 Calcium Aluminate Cement 191
5.1.3 Rutting of Bituminous Concrete 193
5.2 Set Retarders 193
5.2.1 Superplasticizers 194
5.3 Accelerators 194
5.3.1 Aqueous Dispersions of Silica 195
5.3.2 Non–Chloride Cement Accelerators 195
5.4 Dispersants and Thinners 196
5.4.1 Xylonic Acid 196
5.4.2 Thixotropy 197
5.4.3 Flowability 198
5.5 Defoamers 199
5.5.1 Ethoxylated Fatty Alcohol Acrylates 200
5.5.2 Hydroxyl Alkyl Acrylate 200
5.5.3 Tributyl Phosphate 202
5.5.4 Silicone Oils 202
5.5.5 Other Additives 202
5.6 Shrinkage Compensation 202
5.7 Permeability 203
5.7.1 Expanded Perlite 204
5.7.2 Pozzolanic Materials 204
5.7.3 Cracking Catalyst 205
5.8 Air Entraining Agents 206
5.8.1 Fluorochemical Surfactants 207
5.8.2 Superabsorbent Polymers 207
5.8.3 Rubber Crumb 208
5.8.4 Autoclaved Aerated Concrete 209
5.9 Corrosion Protection 210
5.9.1 Modified Hydrotalcites 210
5.9.2 Chloride Ion Scavenging 210
5.9.3 Dopamelanin 211
5.10 Superabsorbent Polymers 212
5.11 Fibers 212
5.11.1 Poly(oxymethylene) Fibers 212
5.12 Additives fromWastes 214
5.12.1 Waste Rubber 214
5.12.2 anomodified Concrete Additive 216
References 220
6 Other Uses 225
6.1 High Performance Additive for Powder Coatings 225
6.1.1 Antimicrobial Powder Coatings 225
6.2 Radiation Shielding 226
6.3 Superabsorbent Polymers 229
6.4 Laser Additive Manufacturing of High
Performance Materials 232
6.4.1 Laser Metal Deposition Additive Manufacturing 232
6.4.2 Hybrid Processes 233
6.5 High Temperature Cooling Application 234
References 236
Index 239
Tradenames 239
Acronyms 242
Chemicals 244
General Index 255
Johannes Karl Fink is Professor of Macromolecular Chemistry at Montanuniversität Leoben, Austria. His industry and academic career spans more than 30 years in the fields of polymers, and his research interests include characterization, flame retardancy, thermodynamics and the degradation of polymers, pyrolysis, and adhesives. Professor Fink has published several books on physical chemistry and polymer science including A Concise Introduction to Additives for Thermoplastic Polymers (Wiley–Scrivener 2009), Polymeric Sensors and Actuators (Wiley–Scrivener 2012), and The Chemistry of Biobased Polymers (Wiley–Scrivener 2014).