'This book provides a detailed and concise account of analysis and measure theory on Polish spaces, including results about probability measures. Containing more than 200 elementary exercises, it will be a useful resource for advanced mathematical students and also for researchers in analysis.' Luca Granieri, Mathematical Reviews
Introduction; Part I. Topological Properties: 1. General topology; 2. Metric spaces; 3. Polish spaces and compactness; 4. Semi-continuous functions; 5. Uniform spaces and topological groups; 6. Càdlàg functions; 7. Banach spaces; 8. Hilbert space; 9. The Hahn–Banach theorem; 10. Convex functions; 11. Subdifferentials and the legendre transform; 12. Compact convex Polish spaces; 13. Some fixed point theorems; Part II. Measures on Polish Spaces: 14. Abstract measure theory; 15. Further measure theory; 16. Borel measures; 17. Measures on Euclidean space; 18. Convergence of measures; 19. Introduction to Choquet theory; Part III. Introduction to Optimal Transportation: 20. Optimal transportation; 21. Wasserstein metrics; 22. Some examples; Further reading; Index.