'This book covers a broad range of topics in introductory statistics, employing a hands-on, problem-based approach. The latest edition expands an already long list of topics to include bootstrap techniques and experimental design considerations. By providing detailed, worked-through examples based on real data and substantive research questions, the authors guide the student through the data analysis process from beginning to end. However, this is no 'cookbook' - each section builds on the concepts and techniques established previously, and the reader is encouraged to explore the nuances involved in effective statistical analysis. What is particularly unique about the authors' exposition is that it can be read on many levels; this book will serve well as a course textbook or as a handy reference for the applied researcher.' Marc A. Scott, New York University
1. Introduction; 2. Examining univariate distributions; 3. Measures of location, spread, and skewness; 4. Re-expressing variables; 5. Exploring relationships between two variables; 6. Simple linear regression; 7. Probability fundamentals; 8. Theoretical probability models; 9. The role of sampling in inferential statistics; 10. Inferences involving the mean of a single population when σ is known; 11. Inferences involving the mean when σ is not known: one- and two-sample designs; 12. Research design: introduction and overview; 13. One-way analysis of variance; 14. Two-way analysis of variance; 15. Correlation and simple regression as inferential techniques; 16. An introduction to multiple regression; 17. Nonparametric methods.