ISBN-13: 9780820601038 / Angielski / Twarda / 1969 / 418 str.
CONTENTS - MAIN NOTATIONS - CONTENTS - CHAPTER I. - INTERACTION OF THE NUCLEAR RADIATION WITH MATTER - 1.1. Interaction of heavy charged particles with matter - 1.2. Passage of electrons through matter - 1.3. Interaction processes of gamma and X-rays - 1.4. Interaction processes of neutrons - 1.5. Conclusions - CHAPTER II. - FUNDAMENTAL PROCESSES IN SEMICONDUCTORS AND METALS - 2.1. Schrodinger equation. The particle inside the potential well - 2.2. The hydrogen atom - 2.3. Theory of the periodic system of elements - 2.4. Electrons in crystals - 2.5. Effective mass - 2.6. Energy bands - 2.7. Statistical distributions - 2.8. Equilibrium density of charge carriers in semiconductors - 2.9. Transport phenomena - 2.10. Recombination phenomena - 2.11. P-N junction - 2.12. Phenomena at the metal-semiconductor interface - CHAPTER III. - WORKING PRINCIPLES OF NUCLEAR RADIATION SEMICONDUCTOR DETECTORS - 3.1. Charge-carrier injection. The mean energy for electron-hole pair production - 3.2. The drift of charge-carriers in the electric field. The shape of the current and voltage pulse given by the collection of a single pair. - 3.3. Collection time of electron-hole pairs in a P-N abrupt junction - 3.4. Collection time of electron-hole pairs in coaxial Ge (Li) detectors - 3.5. Influence of SD equivalent circuit elements on the voltage and current pulse shape - 3.6. Collection of charge-carriers in real devices - 3.7. Collection of electric charges by diffusion from outside the depletion layer - 3.8. Detector noise - 3.9. Detector energy resolution - CHAPTER IV - CHARACTERISTICS OF SEMICONDUCTOR DETECTORS - 4.1. Electrical characteristics - 4.2. Detection characteristics - 4.3. Effects of temperature, magnetic field and light on the semiconductor detector characteristics - 4.4. Detector sensitivity to neutrons and gamma-rays - 4.5. Effects of radiation damage on detector characteristics - CHAPTER V - SEMICONDUCTOR DETECTOR TYPES - 5.1. Methods for obtaining high electric fields in semiconductors - 5.2. Homogeneous semiconductor detectors - 5.3. Diffused N-P junction detectors - 5.4. Surface-barrier detectors - 5.5. Guard-ring detectors - 5.6. Totally depleted detectors - 5.7. Neutron detectors - 5.8. Special detectors - 5.9. NIP detectors - CHAPTER VI - AMPLIFICATION OF SEMICONDUCTOR DETECTOR ELECTRIC PULSES - 6.1. Electric charge to voltage pulse conversion - 6.2. Charge-sensitive-preamplifier-noise specification and measurement - 6.S. Amplifier-noise sources - 6.4. Effects of amplifier shaping circuits on noise spectra - 6.5. RC-RC amplifier signal to noise ratio - CHAPTER VII - SEMICONDUCTOR DETECTOR ASSOCIATED ELECTRONICS - 7.1. Spectrometers with semiconductor detectors - 7.2. Charge sensitive preamplifiers - 7.3. Main amplifier - 7.4. Amplitude analyser and expander - 7.5. High amplitude stability pulse generator - 7.6. Transistorized apparatus - APPENDIX A I: Basic properties of Si and Ge - APPENDIX A II: Main natural and artificial alpha sources - APPENDIX A III: Analysis of some circuits used in charge sensitive preamplifiers - REFERENCES -"
CONTENTS -MAIN NOTATIONS -CONTENTS -CHAPTER I. - INTERACTION OF THE NUCLEAR RADIATION WITH MATTER -1.1. Interaction of heavy charged particles with matter -1.2. Passage of electrons through matter -1.3. Interaction processes of gamma and X-rays -1.4. Interaction processes of neutrons -1.5. Conclusions - CHAPTER II. - FUNDAMENTAL PROCESSES IN SEMICONDUCTORS AND METALS -2.1. Schrödinger equation. The particle inside the potential well -2.2. The hydrogen atom -2.3. Theory of the periodic system of elements -2.4. Electrons in crystals -2.5. Effective mass -2.6. Energy bands -2.7. Statistical distributions -2.8. Equilibrium density of charge carriers in semiconductors -2.9. Transport phenomena -2.10. Recombination phenomena -2.11. P-N junction -2.12. Phenomena at the metal-semiconductor interface -CHAPTER III. - WORKING PRINCIPLES OF NUCLEAR RADIATIONSEMICONDUCTOR DETECTORS -3.1. Charge-carrier injection. The mean energy for electron-hole pair production -3.2. The drift of charge-carriers in the electric field. The shape of thecurrent and voltage pulse given by the collection of a single pair. -3.3. Collection time of electron-hole pairs in a P-N abrupt junction -3.4. Collection time of electron-hole pairs in coaxial Ge (Li) detectors -3.5. Influence of SD equivalent circuit elements on the voltage and current pulse shape -3.6. Collection of charge-carriers in real devices -3.7. Collection of electric charges by diffusion from outside the depletion layer -3.8. Detector noise -3.9. Detector energy resolution -CHAPTER IV - CHARACTERISTICS OF SEMICONDUCTOR DETECTORS -4.1. Electrical characteristics -4.2. Detection characteristics -4.3. Effects of temperature, magnetic field and light on the semiconductordetector characteristics -4.4. Detector sensitivity to neutrons and gamma-rays -4.5. Effects of radiation damage on detector characteristics -CHAPTER V - SEMICONDUCTOR DETECTOR TYPES -5.1. Methods for obtaining high electric fields in semiconductors -5.2. Homogeneous semiconductor detectors -5.3. Diffused N-P junction detectors -5.4. Surface-barrier detectors -5.5. Guard-ring detectors -5.6. Totally depleted detectors -5.7. Neutron detectors -5.8. Special detectors -5.9. NIP detectors -CHAPTER VI - AMPLIFICATION OF SEMICONDUCTOR DETECTOR ELECTRIC PULSES -6.1. Electric charge to voltage pulse conversion -6.2. Charge-sensitive-preamplifier-noise specification and measurement -6.S. Amplifier-noise sources -6.4. Effects of amplifier shaping circuits on noise spectra -6.5. RC-RC amplifier signal to noise ratio -CHAPTER VII - SEMICONDUCTOR DETECTOR ASSOCIATED ELECTRONICS -7.1. Spectrometers with semiconductor detectors -7.2. Charge sensitive preamplifiers -7.3. Main amplifier -7.4. Amplitude analyser and expander -7.5. High amplitude stability pulse generator -7.6. Transistorized apparatus -APPENDIX A I: Basic properties of Si and Ge -APPENDIX A II: Main natural and artificial alpha sources -APPENDIX A III: Analysis of some circuits used in charge sensitivepreamplifiers -REFERENCES -