ISBN-13: 9780367448691 / Angielski / Miękka / 2019 / 448 str.
ISBN-13: 9780367448691 / Angielski / Miękka / 2019 / 448 str.
Update your knowledge of the chemical, biological, and physical properties of liquid-liquid interfaces with Liquid-Liquid Interfaces: Theory and Methods. This valuable reference presents a broadly based account of current research in liquid-liquid interfaces and is ideal for researchers, teachers, and students. Internationally recognized investigators of electrochemical, biological, and photochemical effects in interfacial phenomena share their own research results and extensively review the results of others working in their area. Because of its unusually wide breadth, this book has something for everyone interested in liquid-liquid interfaces. Topics include interfacial and phase transfer catalysis, electrochemistry and colloidal chemistry, ion and electron transport processes, molecular dynamics, electroanalysis, liquid membranes, emulsions, pharmacology, and artificial photosynthesis. Enlightening discussions explore biotechnological applications, such as drug delivery, separation and purification of nuclear waste, catalysis, mineral extraction processes, and the manufacturing of biosensors and ion-selective electrodes. Liquid-Liquid Interfaces: Theory and Methods is a well-written, informative, one-stop resource that will save you time and energy in your search for the latest information on liquid-liquid interfaces.
1. Equilibrium electric potential between two immiscible electrolyte solutions /T. Kakiuchi -- I. Distribution potential -- A. Phase-boundary potential -- B. Distribution potential at ITIES -- 1. Nernst equation -- 2. Standard ion transfer potential -- 3. Calculation of distribution potential -- 4. Distribution potential in the presence of ion pair formation and complex formation reactions -- 5. Distribution of potential -- 6. Distribution potential in small systems -- II. Polarizability of the liquid-liquid interface -- III. Nonpolarized ITIES and reference potentials in organic phases -- IV. Free energy of coupling of ion transfer and electron transfer -- 1. Mixed potential determined by electron transfer and ion transfer at ITIES -- 2. Partition of indifferent electrolyte ions -- 3. Relative strength of ion transfer and electron transfer -- V. Conclusions -- VI. References -- 2. Volta and surface potentials at liquid /liquid interfaces /Z. Koczorowski -- I. Introduction -- II. Electrified liquid /liquid interfaces and their electrical potentials -- III. Volta potential and voltaic cells -- IV. Voltaic cells with water /nonpolar liquid interfaces -- V. Voltaic cells with immiscible electrolyte solution interface -- VI. Experimental methods of investigation of voltaic cells -- VII. Final remarks -- VIII. References -- 3. Ion solvation /Y. Marcus -- I. Introduction -- II. The relevant properties of ions -- III. The relevant properties of solvents -- IV. Quantities describing ionic hydration -- A. Thermodynamics of ion hydration -- B. Methods of investigation -- C. Other properties relevant to ion hydration -- D. The data -- E. Interpretation -- V. Transfer of ions into non-aqueous solvents -- A. Methods of investigation -- B. The data -- C. Interpretation -- VI. Preferential ion solvation in mixed solvents -- VII. References -- 4. Adsorption isotherms and the structure of oil /water interface /V. S. Markin and A. G. Volkov -- I. Introduction -- II. Surface solution model -- III. Analysis of the generalized Frumkin isotherm -- IV. Classical isotherms as a special cases of the generalized adsorption isotherm -- V. Adsorption isotherm and the structure of interphase -- VI. Conclusion -- VIL References -- 5. The electrical double layer at liquid-liquid interfaces /A. Watts and T. J. VanderNoot -- I. Introduction -- A. Model of Gouy, Chapman, and Stern -- B. Model of Verwey and Niessen -- C. Modified Verwey-Niessen model -- D. Mixed solvent layer model -- II. Models of electrolytes and double layers -- A. Modified Poisson-Boltzmann (MPB) model -- B. Quasi-lattice models -- III. Simulations of solvents and interfaces -- A. Molecular dynamics simulations -- 1. Solvent between walls -- 2. Liquid-liquid interfaces -- B. Monte Carlo simulations -- 1. Solvent between walls -- 2. Liquid-liquid interfaces -- 3. Diffuse layers at liquid-liquid interfaces -- IV. Experimental methods -- A. Surface tension and electrocapillarity -- 1. Drop weight and drop time -- 2. Wilhelmy plate -- 3. Drop profiles -- 4. Thermal ripplons and capillary waves -- B. Electrochemical transient techniques -- 1. Pulse method -- 2. Impedance method -- C. Spectroelectrochemistry -- I. Laser Scattering -- 2. Ellipsometry -- 3. Non-linear optical spectroscopy -- 4. Raman spectroscopy -- 5. Fluorescence emission -- 6. X-ray reflectivity -- 7. Neutron reflectivity -- V. Conclusions -- A. Structure of the interfacial region -- B. Implications of interfacial structure -- C. Validity of conventional models -- D. Adsorption -- E. Kinetics of ion transfer -- F. Kinetics of electron transfer -- VI. References -- 6. Second harmonic generation at liquid /liquid interfaces /P. F. Brevet and H. H. Girault -- I. Introduction -- II. Historical overview -- III. Theory -- A. Macroscopic origin of nonlinear phenomena -- B. First models of the nonlinear slab -- C. The model of the polarization sheet for the Surface SH response -- D. Nonlocal contribution from the bulk -- E. Field-induced Surface SH response -- F. Microscopic description of the Surface SH response -- IV. Experimental apparatus -- V. Surface SH origin from neat liquid /liquid interfaces -- VI. Molecular orientation at liquid /liquid interfaces -- VII. Interfacial chemical equilibrium -- VIII. Dynamics at liquid /liquid interfaces -- IX. Surface sum-frequency generation -- X. Conclusion -- XI References -- 7. Quantum theory of charge transfer /Yu. I. Kharkats and A. M. Kuznetsov -- I. Physical mechanism of charge transfer and the role of polar medium -- II. Outer-sphere solvent reorganization energy -- III. Electron transfer at the interface and specific forms of the solvent reorganization energy -- IV. Ion transfer across the interface of two phases -- V. References -- 8. Kinetics of charge transfer /Z. Samec -- I. Introduction -- II. Ion transfer -- A. Apparent kinetic parameters -- 1. Definitions -- 2. Experimental results -- B. True kinetic parameters -- l. Static and dynamic effects of the electrical double layer -- 2. Experimental results -- C. Theoretical considerations -- III. Electron transfer -- A. Apparent kinetic parameters -- 1. Definition -- 2. Experimental results -- B. True parameters -- C. Theoretical considerations -- IV. References -- 9. Molecular dynamics of charge transfer at the liquid /liquid interface /I. Benjamin -- I. Introduction -- A. Preliminaries -- B. The molecular dynamics method -- 1. Potential energy surfaces -- 2. Boundary conditions -- 3. Free energy calculations -- II. The neat interface -- A. The water /1,2-dichloroethane interface -- 1. General comments and density profiles -- 2. Other properties -- B. Other water /organic phase interfaces -- III. Electron transfer -- A. Overview -- B. Continuum models -- C. Microscopic treatment -- D. Solvent dynamic effects -- IV. Ion transfer -- A. Overview -- B. Non-equilibrium calculations of ion transfer -- 1. Transfer from DCE to the aqueous phase -- 2. Transfer from the aqueous phase to DCE -- C. Free energy profile for ion transfer -- V. Conclusions and outlook -- VI. References -- 10. Photoelectrochemical effect at interface between two immiscible electrolyte solutions /N. A. Kotov and M. G. Kuzmin -- I. Introduction -- II. Reactions of charge transfer at liquid-liquid interfaces in microheterogeneous systems -- A. Interfacial effects on the charge transfer microheterogeneous liquid-liquid systems -- B. What is the interfacial potential? -- C. Measurement of the interfacial potential at the microheterogeneous liquid-liquid interface -- D. Methods for interfacial potential control in microheterogeneous systems -- E. Comparison of macro- and microscopic liquid-liquid interfaces -- III. Photoelectrochemical effect at the interface of immiscible electrolyte solutions -- A. Photoinduced charge transfer at the interface of immiscible electrolyte solutions -- B. Ions at the interface. Why do they cross it? -- C. Diffusional kinetics of photoinduced ion transport across ITIES. A general equation -- D. Analytical approximation -- E. A computer simulation of the photocurrent kinetics -- F. An inverse problem: determination of the rate constants and other parameters from the photocurrent -- G. Complex kinetics of the photocurrent -- IV. Conclusion -- V. References -- 11. Excited state electron transfer at the interface of two immiscible electrolyte solutions /M. K. De Armond and A. H. De Armond -- I. Introduction -- II. Electrochemical probing of the ITIES -- III. Electron transfer kinetics -- IV. Theory of electron transfer rates across liquid-liquid interfaces (from Marcus and Benjamin) -- V. The photochemical redox process -- VI. Photoeffects at the polarized liquid-liquid interface -- VII. Anomalous photoeffects -- VIII. Kinetics of charge transfer -- IX. The instrumental system -- X. Chemicals -- XI. The future ofITIES photoeffects -- XII. References -- 12. Amperometric ion-selective electrode sensors /M. Senda and Y. Yamamoto -- I. Introduction -- II. Electrochemical principle of ion-selective electrode (ISE) -- Amperometric ISE vs. Potentiometric ISE -- III. Amperometric ISE sensors -- A. Potassium and sodium ion sensor -- 1. Electrochemical cell -- 2. Pulse amperometry -- 3. Current sensitivity and response time -- 4. Simultaneous determination of two or more components -- B. Ammonium ion and volatile amine sensors -- 1. Electrochemical cell -- 2. Volatile amine sensor -- C. Amperometric ultramicro ISE sensors -- IV. Amperometric ISE biosensors -- A. Urea biosensor -- 1. Electrochemical cell -- 2. Correction for residual current -- V. Electroanalytical chemistry at liquid /liquid interfaces -- VI. References -- 13. Immiscible liquid interface and self-organized assemblies of lecithin /Yu. A. Shchipunov -- I. Introduction -- II. Lecithin self-assembly and self-organization at the interface -- A. Dilute solutions -- B. Concentrated solutions -- III. Interfacial structures and ternary phase diagrams -- A. Properties of lecithin in lecithin /alkane /water system -- B. Model for interfacial processes -- IV. Electrointerfacial phenomena -- A. Breakdown phenomenon -- B. Accelerated reduction in interfacial tension -- C. Reduced interfacial tension -- D. Electrohydrodynamic instability -- E. Emulsification -- F. Gel formation -- V. Methods -- VI. Prospects for applications and further studies -- VII. References -- 14. Pbospholipid monolayers and phospholipases /T. Kakiuchi -- I. Properties of phospholipid monolayers at ITIES -- A. Phosphatidylcholine monolayers -- B. Phosphatidylethanolamine monolayers -- C. Phosphatidylserine monolayers -- D. Phosphatidic acid and monolayers -- II. Charge transfer across the phospholipid monolayer at !TIES -- A. Effect of phospholipid monolayers on the rate of ion transfer across !TIES -- B. Effect of phospholipid monolayers on the rate of electron transfer across !TIES -- III. Interfacial enzymatic reactions at ITIES -- A. Hydrolysis ofphosphatidylcholine by phospholipase D -- B. Hydrolysis of phosphatidylcholine by phospholipase A2 -- IV. Conclusions -- V. References -- 15. Electrodialysis through liquid ion-exchange membranes and the oil /water interface /A. N. Popov -- I. Introduction -- A. Liquid membranes in general -- B. Liquid membranes in electrodialysis -- II. Regularities of electrodialysis through liquid membranes -- A. Ion-exchange membranes -- I. Anion exchange membranes -- 2. Membranes containing macrocyclic ionophores -- a. Free ionophores -- b. Complexes of macrocyclic ionophores with metal salts -- 3. Cation exchange membranes -- B. Transport of W ions through membranes containing aliphatic amines -- C. Periodic phenomena in electrodialysis -- 1. Current oscillations in electrodialysis oflead ions -- 2. Other ions -- III. Application of electrodialysis ofliquid membranes -- IV. Experimental apparatus -- A. Electrodialysis through liquid membranes -- B. Measurement of interfacial tension at the water /membrane interface in the electric field -- V. Conclusion -- VI. References -- 16. Oil /water interfaces and the origin of life /D. W. Deamer and A. G. Volkov -- I. Liquid-liquid interfaces and chemical evolution on the early Earth -- II. Environmental conditions of the prebiotic Earth -- III. Sources of prebiotic organic compounds -- IV. Membranes and liquid-liquid interfaces -- V. Photochemistry in the prebiotic environment: synthesis of amphiphiles -- VI. Proton production by PAH in hydrocarbon -- VII. Carbon dioxide reactivity in PAH-alkane systems -- VIII. Conclusions -- IX. References -- 17. Electrochemical behavior of drugs at the oil /water interface /K. Arai, F. Kusu and K. Takamura -- I. Introduction -- II. Ion-transfer voltammetry at the oil /water interface -- A. Ion-transfer voltammetry -- 1. Experimental techniques -- 2. Ion transfer at the nitrobenzene /water interface -- B. Drug voltammograms -- I. Hypnotic drugs -- 2. Local anesthetic drugs -- 3. Cholinergetic drugs -- 4. Anti-cholinergic drugs -- 5. Adrenergic drugs -- 6. Anti-adrenergic drugs -- 7. General view on half-wave potential -- III. Electrical potential oscillation across a liquid membrane -- A. Electrical potential oscillation -- I.Experimental technique -- 2. Mechanism of oscillation -- B. Effects of drugs on oscillation mode -- 1. Hypnotic drugs -- 2. Local anesthetic drugs -- 3. Cholinergetic and anti-cholinergic drugs -- 4. Adrenergic drugs and anti-adrenergic drugs -- IV. Conclusion -- VII. References -- 18. Electrocatalysis and electrolysis /V. J. Cunnane and L. Murtomaki -- I. Introduction -- A. Oveiview -- B. Review of literature -- II. Theory of two phase electron transfer reactions -- A. Kinetics of electron transfer -- B. Matching potentials -- III. Model systems -- A. Ferrocenes -- B. Other systems -- IV. Electrocatalysis. and electrodeposition -- A. Electrocatalysis -- 1. Mediated electron transfer -- 2. Phase transfer catalysis -- B. Electrodeposition -- V. Summary and future developments -- X. References -- Subject Index.
Volkov\, Alexander G.; Deamer\, David W.
1997-2024 DolnySlask.com Agencja Internetowa