ISBN-13: 9780306425110 / Angielski / Miękka / 1987 / 774 str.
ISBN-13: 9780306425110 / Angielski / Miękka / 1987 / 774 str.
The human brain is the inner universe through which all external events are perceived. That fact alone should ensure that neuroscience will eventually receive top priority in the list of human endeavors. The brain represents the pinnacle of sophistication in the realm of living systems. Yet it is an imperfect organ, whose failures in disease processes lead to the occupation of more than half of all hospital beds and whose variable performance in the healthy state contributes in undetermined degree to the world's social problems. Every significant advance in or understanding of the brain has yielded enormous practical dividends. There is every reason to believe the future holds even greater promise. In the preface to our first edition, we drew attention to the establishment of graduate programs in dozens of universities around the world and the emergence of numerous international journals devoted to interdisciplinary work on the brain. The discoveries that have flowed from this activity have required extensive updating of the details of this book, which is a testimony to the fruitfulness of neuroscience research. Yet the basics remain the same.It is more important than ever that the neuroscientist be presented with the fundamental subdisciplines that together make up the total of brain research in an integrated manner.
I Architecture and Operation of the Nervous System.- 1 The Fine Structure of the Mammalian Brain.- 1.1. Introduction.- 1.2. The Neuron.- 1.2.1. General Morphology.- 1.2.2. Synapse.- 1.2.3. Components of the Neuron.- 1.2.4. Axoplasmic Flow.- 1.2.5. Pathological Changes in the Neuron.- 1.3. Neuroglial Cells.- 1.4. Blood-Brain Barrier.- 1.5. Molecular Genetics Applied to the Nervous System.- 1.5.1. DNA Amplification and Probe Preparation.- 1.5.2. DNA Hybridization and Gene Tracing.- 1.5.3. Hybridomas and Monoclonal Antibodies.- 2 Signaling in the Nervous System.- 2.1. Signaling by Nerve Impulses.- 2.2. The Nerve Impulse.- 2.3. Ionic Mechanism of the Nerve Impulse.- 2.4. Conduction of the Nerve Impulse.- 2.5. Conduction Velocity and the Myelinated Fibers.- 2.6. Metabolic Considerations.- 2.7. Impulse Propagation in Neurons: Somata and Dendrites.- 2.8. Afterpotentials.- 2.9. Repetitive Neuronal Firing.- 3 Chemical Synaptic Transmission at Peripheral Synapses.- 3.1. Discovery of Chemical Synaptic Transmission.- 3.2. Neuromuscular Transmission.- 3.2.1. Introduction.- 3.2.2. Structural Features of the Neuromuscular Synapse.- 3.2.3. Physiological Features of the Neuromuscular Synapse.- 3.2.4. Pharmacological Features of the Neuromuscular Synapse.- 3.2.5. Quantal Liberation of Acetylcholine.- 3.2.6. Factors That Control Quantal Emission from the Nerve Terminal.- 3.2.7. Essential Role of Calcium in Quantal Release.- 3.2.8. Molecular Action of Acetylcholine.- 3.2.9. Diagrammatic Representation of Neuromuscular Synapses.- 3.3. Transmission across the Giant Synapse of the Squid Stellate Ganglion.- 3.4. Ion Channels across the Presynaptic and Postsynaptic Membranes of a Chemically Transmitting Synapse.- 3.5. Concluding Remarks.- 4 Synaptic Transmission in the Central Nervous System.- 4.1. Introduction.- 4.2. Excitatory Synaptic Action.- 4.3. Impulse Generation by Synaptic Action.- 4.4. Inhibitory Synaptic Action.- 4.5. General Features of Transmission by Postsynaptic Ionotropic Action in the Brain.- 4.6. Inhibition by Reciprocal Synapses.- 4.7. Simple Neuronal Pathways in the Brain.- 4.7.1. Pathways for la Impulses.- 4.7.2. Renshaw Cell Pathway.- 4.7.3. Hippocampal Basket Cell Pathway.- 4.7.4. Operative Features of Inhibitory Pathways.- 4.8. Presynaptic Inhibition.- 4.9. Principles of Neuronal Operation.- II Specific Neuronal Participants and Their Physiological Actions.- 5 Principles of Synaptic Biochemistry.- 5.1. Criteria for Neurotransmitters.- 5.1.1. Anatomical.- 5.1.2. Chemical.- 5.1.3. Physiological.- 5.1.4. Pharmacological.- 5.2. Classification of Neurotransmitters.- 5.3. Properties of Receptors.- 5.3.1. Kinetic Criteria.- 5.3.2. Pharmacological Criteria.- 5.3.3. Anatomical Criteria.- 5.3.4. Chemical Criteria.- 5.4. Coupler and Effector Systems.- 5.4.1. Cyclic Nucleotides as Second Messengers.- 5.4.2. Calcium and Its Binding Proteins.- 5.4.3. Polyphosphoinositides.- 5.5. Summary.- 6 Putative Excitatory Neurons: Glutamate and Aspartate.- 6.1. Introduction.- 6.2. Chemistry and Metabolism of Glutamate and Aspartate.- 6.3. Anatomical Distribution of Glutamate and Aspartate.- 6.4. Physiology of Glutamate and Aspartate.- 6.4.1. Receptor Sites.- 6.4.2. Binding Sites.- 6.4.3. Excitotoxicity.- 6.5. Pharmacology and Pathology of Glutamate and Aspartate.- 6.6. Summary.- 7 Inhibitory Amino Acid Neurotransmitters.- 7.1. Introduction.- 7.2. Chemistry and Metabolism of ?-Aminobutyric Acid.- 7.3. Anatomical Distribution of ?-Aminobutyric Acid Pathways in brain.- 7.3.1. Cerebellum.- 7.3.2. Hippocampus.- 7.3.3. Basal Ganglia.- 7.3.4. Raphe System.- 7.3.5. Diencephalon.- 7.3.6. Spinal Cord.- 7.3.7. Olfactory Bulb.- 7.3.8. Retina.- 7.3.9. Peripheral ?-Aminobutyric Acid.- 7.4. Physiology of ?-Aminobutyric Acid.- 7.5. Pharmacology of ?-Aminobutyric Acid.- 7.5.1. Receptor Site Modulators.- 7.5.2. Synthesis Promotion or Inhibition.- 7.5.3. Storage and Release Mechanisms.- 7.5.4. Pump Inhibition.- 7.5.5. Inhibition of Metabolism.- 7.5.6. Receptor Agonists and Antagonists.- 7.6. Pathology of ?-Aminobutyric Acid.- 7.7. Chemistry and Metabolism of Glycine.- 7.8. Anatomical Distribution of Glycine.- 7.9. Physiology, Pharmacology, and Pathology of Glycine.- 7.10. Other Suggested Inhibitory Amino Acid Transmitters.- 7.10.1. Taurine.- 7.10.2. Proline.- 7.10.3. Pipecolic Acid (Piperidine-2-carboxylic Acid).- 7.10.4. Other Amino Acids with Inhibitory Action.- 7.11. Summary.- 8 Cholinergic Neurons.- 8.1. Introduction.- 8.2. Chemistry of Acetylcholine.- 8.2.1. Synthesis of Acetylcholine.- 8.2.2. Destruction of Acetylcholine.- 8.2.3. Storage, Release, and Turnover of Acetylcholine.- 8.3. Anatomy of Cholinergic Neurons: Cholinergic Cell Groups and Pathways..- 8.3.1. Medial Forebrain Complex.- 8.3.2. Striatal Interneurons.- 8.3.3. Motor Nuclei for Peripheral Nerves.- 8.3.4. Parabrachial Complex.- 8.3.5. Reticular Formation.- 8.3.6. Minor Cholinergic Systems.- 8.4. Physiological Actions of Acetylcholine and the Cholinergic Receptors.- 8.4.1. Types of Cholinergic Receptors.- 8.4.2. Iontophoretic Effects of Acetylcholine on Central Neurons.- 8.4.3. Separation of the Acetylcholine Receptor.- 8.5. Pharmacology of Acetylcholine.- 8.5.1. Muscarinic Agonists 25.- 8.5.2. Muscarinic Antagonists.- 8.5.3. Nicotinic Agonists.- 8.5.4. Nicotinic Antagonists.- 8.5.5. Release Inhibitors and Promoters.- 8.5.6. Anticholinesterases.- 8.5.7. Synthesis Stimulators and Inhibitors.- 8.6. Pathology of Cholinergic Systems.- 8.6.1. Myasthenia Gravis.- 8.6.2. Senile Dementia of the Alzheimer Type.- 8.6.3. Diseases That Affect Anterior Horn Cells.- 8.7. Summary.- 9 Catecholamine Neurons.- 9.1. Introduction.- 9.2. Chemistry of Catecholamine Neurons.- 9.2.1. Synthesis of Catecholamines.- 9.2.2. Catabolism of Catecholamines.- 9.3. Storage, Release, and Turnover of Catecholamines.- 9.3.1. Storage of Catecholamines.- 9.3.2. Release of Catecholamines.- 9.3.3. Reuptake of Synaptically Released Catecholamines.- 9.3.4. Turnover of Catecholamines.- 9.3.5. In Vivo Control of Catecholamine Synthesis.- 9.4. Anatomy of Catecholamine Neurons.- 9.4.1. Methods and General Anatomical Considerations.- 9.4.2. Anatomical Distribution of Dopamine.- 9.4.3. Anatomical Distribution of Noradrenaline.- 9.4.4. Anatomical Distribution of Adrenaline.- 9.5. Physiology and Pharmacology of Dopamine.- 9.5.1. Physiology of Dopamine.- 9.5.2. Pharmacology of Dopamine.- 9.6. Physiology and Pharmacology of Noradrenaline.- 9.6.1. Physiology of Noradrenaline.- 9.6.2. Pharmacology of Noradrenaline.- 9.7. Physiology and Pharmacology of Adrenaline.- 9.8. Summary.- 10 Serotonin and Other Brain Indoles.- 10.1. Introduction.- 10.2. Chemistry and Metabolism of Serotonin.- 10.2.1. Synthesis of Serotonin.- 10.2.2. Destruction of Serotonin.- 10.2.3. Other Routes of Serotonin Metabolism.- 10.3. Storage, Release, and Turnover of Serotonin.- 10.3.1. Storage and Release of Serotonin.- 10.3.2. Control of Serotonin Synthesis.- 10.4. Anatomy of Serotonin Neurons.- 10.4.1. Anatomical Distribution of Serotonin.- 10.4.2. Serotonin Pathways and Terminals.- 10.5. Physiological Actions of Serotonin and Serotonin Receptors.- 10.5.1. Serotonin Receptors.- 10.5.2. Serotonin and Sleep.- 10.5.3. Serotonin and Sex.- 10.5.4. Serotonin and Pain.- 10.5.5. Serotonin, Mood, and Mental Illness.- 10.6. Pharmacology of Serotonin.- 10.6.1. Agents That Are Toxic to Serotonin Neurons.- 10.6.2. Inhibitors of Tryptophan Hydroxylase.- 10.6.3. Inhibitors of 5-Hydroxytryptophan Decarboxylase.- 10.6.4. Inhibitors of Monoamine Oxidase.- 10.6.5. Inhibitors of Serotonin Uptake.- 10.6.6. Inhibitors of Storage.- 10.6.7. Receptor Site Agonists and Antagonists.- 10.7. Melatonin and Other Indoles.- 10.7.1. Melatonin and the Pineal Gland.- 10.7.2. Tryptamine in the Brain.- 10.8. Summary.- 11 Other Heterocyclic Putative Neurotransmitters: Histamine and Purines.- 11.1. Introduction.- 11.2. Chemistry of Histamine.- 11.2.1. Synthesis of Histamine.- 11.2.2. Destruction of Histamine.- 11.2.3. Storage, Release, and Turnover of Neuronal and Mast Cell Histamine.- 11.3. Anatomy of Histamine Neurons.- 11.4. Physiological Actions of Histamine and Histamine Receptors.- 11.5. Pharmacology of Histamine.- 11.6. Purines.- 11.6.1. Chemistry of Purines.- 11.6.2. Distribution and Anatomy of Adenosine Systems.- 11.6.3. Physiology of Adenosine.- 11.6.4. Other Suggested Purine Neurotransmitters.- 11.7. Summary.- 12 The Prominent Peptides.- 12.1. Introduction.- 12.2. Chemistry of the Neuropeptides.- 12.2.1. Structural Considerations.- 12.2.2. Synthesis of the Neuropeptides.- 12.2.3. Destruction of the Neuropeptides.- 12.2.4. Biotransformation of the Neuropeptides.- 12.3. Distribution and Anatomy of Neuropeptide Systems.- 12.3.1. Methodology.- 12.3.2. General Comments on Distribution.- 12.3.3. Hypothalamus.- 12.3.4. Limbic System.- 12.3.5. Cortex.- 12.3.6. Basal Ganglia.- 12.3.7. Brain Stem and Nucleus Tractus Solitarius.- 12.3.8. Cerebellum.- 12.3.9. Other Systems.- 12.4. Physiology of the Neuropeptides.- 12.4.1. Iontophoretic Effects, Release, Binding Sites, and Second Messengers.- 12.4.2. General Physiology of the Neuropeptides.- 12.5. Pharmacology and Pathology of the Neuropeptides.- 12.5.1 Pharmacology of the Neuropeptides.- 12.5.2. Pathology of the Neuropeptides.- 12.6. Summary.- III The Integrative Aspects of Brain Function.- 13 The Building of the Brain and Its Adaptive Capacity.- 13.1. Building of the Brain.- 13.1.1. Introduction.- 13.1.2. Building of the Cerebral Neocortex.- 13.1.3. Building of the Cerebellum.- 13.1.4. Building of Brain Nuclei and the Hippocampus.- 13.2. Principles of Neuronal Recognition and Connectivity.- 13.2.1. Introduction.- 13.2.2. Neuronal Connectivity in Mammals.- 13.2.3. New Synaptic Connectivities Developed by Activation.- 13.2.4. Regressive Events in Neurogenesis.- 13.2.5. Transplantation.- 13.3. Dependence of Neurons on Trophic Factors.- 13.3.1. Introduction.- 13.3.2. Primary Retrograde Deprivation and Axonal Section.- 13.3.3. Hypothesis of Chromatolysis.- 13.3.4. Secondary and Tertiary Retrograde Transneuronal Degeneration..- 13.3.5. Anterograde Transneuronal Deprivation.- 13.4. Nerve Growth Factor, Other Peptide Neuronotrophic Factors, and Gangliosides.- 13.4.1. Nerve Growth Factor.- 13.4.2. Other Peptide Neuronotrophic Factors.- 13.4.3. Gangliosides.- 13.5. Neurons and Neuronotrophic Factors.- 13.6. Aging and Cell Death.- 13.7. General Conclusions.- 14 Control of Movement by the Brain.- 14.1. Introduction.- 14.2. Motor Control from the Spinal Cord and Brain Stem.- 14.3. Motor Control from the Cerebral Cortex.- 14.3.1. Motor Cortex.- 14.3.2. Discharge of Motor Pyramidal Cells.- 14.3.3. Cerebral Cortex Control of the Motor Cortex: Supplementary Motor Area.- 14.3.4. Arrangement of Pyramidal Cells in Colonies.- 14.3.5. ?-Motoneurons and ?-Motoneurons and the ?-Loop.- 14.3.6. Pyramidal Tract Innervation of ?-Motoneurons and ?-Motoneurons.- 14.3.7. Projection of la Fibers to the Cerebral Cortex.- 14.4. Motor Control by the Cerebellum.- 14.4.1. Introduction.- 14.4.2. Neuronal Structure.- 14.4.3. Neuronal Functions.- 14.4.4. Cerebrocerebellar Pathways.- 14.4.5. Spinocerebellar Connectivities.- 14.4.6. General Comments on the Cerebellum.- 14.5. Motor Control from the Basal Ganglia.- 14.5.1. Introduction.- 14.5.2. Anatomical Interconnections of the Basal Ganglia.- 14.5.3. Neurotransmitters in the Basal Ganglia.- 14.5.4. Physiology, Pharmacology, and Pathology of the Basal Ganglia..- 14.5.5. Summary of Motor Control by the Basal Ganglia.- 14.6. Synthesis of Various Neuronal Mechanisms Concerned with the Control of Voluntary Movement.- 15 Basic Behavioral Patterns.- 15.1. Introduction.- 15.2. Genotropic Action.- 15.3. Central Coordination of Behavior.- 15.4. Central Amines and Behavior.- 15.5. Psychoactive Drugs.- 15.5.1. Neuroleptics.- 15.5.2. Antidepressants.- 15.5.3. Stimulants.- 15.5.4. Anxiolytic Agents.- 15.5.5. Hallucinogenic Agents.- 15.5.6. Summary on Drugs.- 15.6. The Mystery of Mental Illness.- 15.6.1. Hypotheses of Schizophrenia.- 15.6.2. Hypotheses of Affective Psychoses.- 15.7. Summary.- 16 Neuronal Mechanisms Involved in Learning and Memory.- 16.1. Introduction.- 16.2. Structural and Functional Changes Possibly Related to Learning and Memory.- 16.3. Hippocampus as a Model for Memory.- 16.3.1. Calcium and Long-Term Potentiation.- 16.3.2. Synaptic Spine.- 16.3.3. Possible Presynaptic Contributions to Long-Term Potentiation...- 16.3.4. Comprehensive Hypothesis for Long-Term Potentiation.- 16.4. Locations of Engrams.- 16.5. Cognitive Learning and Memory.- 16.5.1. Neural Pathways Involved in the Laying Down of Cognitive Memories According to the Instruction-Selection Hypothesis.- 16.5.2. A Model for Cognitive Memory Built on Long-Term Potentiation.- 16.5.3. Duration of Long-Term Potentiation and Cognitive Memory.- 16.5.4. Recall of Memory.- 16.5.5. Final Comments on Cognitive Memory.- 16.6. Neurochemistry of Learning.- 16.7. Learning in the Motor System.- 16.7.1. Introduction.- 16.7.2. Learning of Automatic Movements.- 16.7.3. Learning of Motor Skills by Animals.- 16.7.4. Learning of Motor Skills by Humans.- 17 Perception, Speech, and Consciousness.- 17.1. Cerebral Cortex.- 17.1.1. Modular Operation of the Neocortex.- 17.2. Perception.- 17.2.1. Introduction.- 17.2.2. Cutaneous Perception (Somesthesis).- 17.2.3. Pain.- 17.2.4. Visual Perception.- 17.2.5. Auditory Perception.- 17.2.6. Olfactory Perception.- 17.2.7. Emotional Coloring of Conscious Perceptions.- 17.3. Language Centers of the Human Brain.- 17.3.1. Introduction.- 17.3.2. Aphasia.- 17.3.3. Experiments on Exposed Brains.- 17.3.4. Intracarotid Injections of Sodium Amytal.- 17.3.5. Dichotic Listening Test.- 17.3.6. Anatomical Substrates of Speech Mechanisms.- 17.4. Language and Self-Consciousness.- 17.4.1. Effects of Global Cerebral Lesions.- 17.4.2. Dominant and Minor Hemispheres.- 17.5. Relationship of Brain to Mind.- 17.5.1. Introduction.- 17.5.2. Testing of Mind-Brain Theories.- 17.5.3. A New Hypothesis of Mind-Brain Interaction.- Epilogue.- References.
John C. Eccles, geb. 1903 in Melbourne, gest. 1997 in Locarno. Medizinstudium in Melbourne. Lehrtätigkeit in Oxford, dann Institutsdirektor in Sidney. Professuren in Otago/Neuseeland, Canberra/Australien und Buffalo/USA. 1963 Nobelpreis für gehirnphysiologische Forschungen. Zahlreiche Veröffentlichungen.
1997-2024 DolnySlask.com Agencja Internetowa