ISBN-13: 9781119582380 / Angielski / Twarda / 2020 / 480 str.
ISBN-13: 9781119582380 / Angielski / Twarda / 2020 / 480 str.
List of Contributors xiiiPreface xvAcknowledgments xviiAbbreviations xix1 Introduction and Background 1Mihai Enescu and Karri Ranta-aho1.1 Why 5G? 11.2 Requirements and Targets 21.2.1 System Requirements 31.2.2 5G Spectrum 71.3 Technology Components and Design Considerations 101.3.1 Waveform 121.3.2 Multiple Access 131.3.3 Scalable/Multi Numerology 131.3.3.1 Motivation for Multiple Numerologies 131.3.3.2 5G NR Numerologies 131.3.4 Multi-antenna 171.3.5 Interworking with LTE and Other Technologies 181.3.6 5G Beam Based Technologies Across Release 15 and Release 16 191.3.6.1 Integrated Access and Backhaul 191.3.6.2 NR Operation on Unlicensed Frequency Bands (NR-U) 201.3.6.3 Ultra-Reliable and Low Latency Communications 211.3.6.4 Vehicular-to-everything (V2X) 211.3.6.5 Positioning 221.3.6.6 System Enhancements 222 Network Architecture and NR Radio Protocols 25Dawid Koziol and Helka-Liina Määttänen2.1 Architecture Overview 252.2 Core Network Architecture 262.2.1 Overview 262.2.2 Service Request Procedure 292.3 Radio Access Network 312.3.1 NR Standalone RAN Architecture 312.3.2 Additional Architectural Options 322.3.3 CU-DU and UP-CP Split 372.4 NR Radio Interface Protocols 412.4.1 Overall Protocol Structure 412.4.2 Main Functions of NR Radio Protocols 442.4.3 SDAP Layer 472.4.4 PDCP Layer 472.4.4.1 PDCP Packet Transmission 482.4.4.2 PDCP Duplication 492.4.4.3 Access Stratum (AS) Security 502.4.4.4 Robust Header Compression (ROHC) 502.4.5 RLC 502.4.5.1 Segmentation and Concatenation 512.4.5.2 RLC Reordering 512.4.5.3 ARQ Retransmissions and Status Reporting 522.4.6 MAC Protocol 532.4.6.1 Overview 532.4.6.2 Multiplexing and Demultiplexing 532.4.6.3 Logical Channel Prioritization 542.4.6.4 Hybrid Automatic Repeat Request (HARQ) 572.4.6.5 BWP Operation 582.4.6.6 Scheduling Request 602.4.6.7 Semi Persistent Scheduling and Configured Grants 602.4.6.8 Discontinuous Reception (DRX) 602.4.6.9 Buffer Status Reports 622.4.6.10 Timing Advance Operation 622.4.6.11 MAC Control Elements 632.4.7 Radio Resource Control (RRC) 672.4.7.1 Overview 672.4.7.2 RRC State Machine 682.4.7.3 Cells, Cell Groups, and Signaling Radio Bearers 702.4.7.4 System Information 712.4.7.5 Unified Access Control (UAC) 782.4.7.6 Connection Control 792.4.7.7 NAS Information Transfer 872.4.7.8 UE Assistance Information 872.4.7.9 RRC PDU Structure 893 PHY Layer 95Mihai Enescu, Youngsoo Yuk, Fred Vook, Karri Ranta-aho, Jorma Kaikkonen, Sami Hakola, Emad Farag, Stephen Grant, and Alexandros Manolakos3.1 Introduction (Mihai Enescu, Nokia Bell Labs, Finland) 953.2 NRWaveforms (Youngsoo Yuk, Nokia Bell Labs, Korea) 963.2.1 Advanced CP-OFDM Waveforms for Multi-Service Support 963.2.2 Low PAPR Waveform for Coverage Enhancement 1023.2.3 Considerations on the Waveform for above 52.6 GHz 1043.3 Antenna Architectures in 5G (Fred Vook, Nokia Bell Labs, USA) 1053.3.1 Beamforming 1053.3.2 Antenna Array Architectures 1083.3.3 Antenna Panels 1103.3.4 Antenna Virtualization 1113.3.5 Antenna Ports 1133.3.6 Beamforming for a Beam-Based Air Interface 1153.4 Frame Structure and Resource Allocation (Karri Ranta-aho, Nokia Bell Labs, Finland) 1153.4.1 Resource Grid 1153.4.2 Data Scheduling and HARQ 1183.4.3 Frequency Domain Resource Allocation and Bandwidth Part 1193.4.4 Time Domain Resource Allocation 1233.5 Synchronization Signals and Broadcast Channels in NR Beam-Based System (Jorma Kaikkonen, Sami Hakola, Nokia Bell Labs, Finland) 1253.5.1 SS/PBCH Block 1253.5.2 Synchronization Signal Structure 1263.5.3 Broadcast Channels 1283.5.3.1 PBCH 1283.5.3.2 SIB1 1293.5.3.3 Delivery of Other Broadcast Information and Support of Beamforming 1353.6 Physical Random Access Channel (PRACH) (Emad Farag, Nokia Bell Labs, USA) 1393.6.1 Introduction 1393.6.2 Preamble Sequence 1403.6.2.1 Useful Properties of Zhadoff-Chu Sequences 1403.6.2.2 Unrestricted Preamble Sequences 1423.6.2.3 Restricted Preamble Sequences 1443.6.3 Preamble Formats 1473.6.3.1 Long Sequence Preamble Formats 1483.6.3.2 Short Sequence Preamble Formats 1493.6.4 PRACH Occasion 1503.6.5 PRACH Baseband Signal Generation 1553.7 CSI-RS (Stephen Grant, Ericsson, USA) 1593.7.1 Overview 1593.7.1.1 CSI-RS Use Cases 1593.7.1.2 Key Differences with LTE 1613.7.2 Physical Layer Design 1623.7.2.1 Mapping to Physical Resources 1623.7.2.2 Antenna Port Mapping 1673.7.2.3 Sequence Generation and Mapping 1673.7.2.4 Time Domain Behavior 1683.7.2.5 Multiplexing with Other Signals 1693.7.3 Zero Power CSI-RS 1703.7.4 Interference Measurement Resources (CSI-IM) 1703.7.5 CSI-RS Resource Sets 1713.7.5.1 CSI-RS for Tracking 1713.7.5.2 CSI-RS for L1-RSRP Measurement 1733.8 PDSCH and PUSCH DM-RS, Qualcomm Technologies, Inc. (Alexandros Manolakos, Qualcomm Technologies, Inc, USA) 1763.8.1 Overview 1763.8.1.1 What is DM-RS Used for? 1763.8.1.2 Key Differences from LTE 1763.8.2 Physical Layer Design 1783.8.2.1 Mapping to Physical Resources 1783.8.2.2 Default DM-RS Pattern for PDSCH and PUSCH 1893.8.2.3 Sequence Generation and Scrambling 1933.8.3 Procedures and Signaling 2003.8.3.1 Physical Resource Block Bundling 2003.8.3.2 DM-RS to PDSCH and PUSCH EPRE Ratio 2053.8.3.3 Antenna Port DCI Signaling 2073.8.3.4 Quasi-Colocation Considerations for DM-RS of PDSCH 2093.9 Phrase- Tracking RS (Youngsoo Yuk, Nokia Bell Labs, Korea) 2103.9.1 Phase Noise and its Modeling 2103.9.1.1 Phase Noise in mm-Wave Frequency and its Impact to OFDM System 2103.9.1.2 Principles of Oscillator Design and Practical Phase Noise Modeling 2113.9.2 Principle of Phase Noise Compensation 2163.9.3 NR PT-RS Structure and Procedures 2213.9.3.1 PT-RS Design for Downlink 2213.9.3.2 PT-RS Design for Uplink CP-OFDM 2243.9.3.3 PT-RS Design for Uplink DFT-s-OFDM 2253.10 SRS (Stephen Grant, Ericsson, USA) 2283.10.1 Overview 2283.10.1.1 SRS Use Cases 2283.10.1.2 Key Differences with LTE 2293.10.2 Physical Layer Design 2303.10.2.1 Mapping to Physical Resources 2303.10.2.2 Antenna Port Mapping 2373.10.2.3 Sequence Generation and Mapping 2393.10.2.4 Multiplexing with Other UL Signals 2433.10.3 SRS Resource Sets 2443.10.3.1 SRS for Downlink CSI Acquisition for Reciprocity-Based Operation 2443.10.3.2 SRS for Uplink CSI Acquisition 2453.10.3.3 SRS for Uplink Beam Management 2463.11 Power Control (Mihai Enescu, Nokia Bell Labs, Finland) 2463.12 DL and UL Transmission Framework (Mihai Enescu, Nokia, Karri Ranta-aho, Nokia Bell Labs, Finland) 2493.12.1 Downlink Transmission Schemes for PDSCH 2493.12.2 Downlink Transmit Processing 2503.12.2.1 PHY Processing for PDSCH 2503.12.2.2 PHY Processing for PDCCH 2513.12.3 Uplink Transmission Schemes for PUSCH 2543.12.3.1 Codebook Based UL Transmission 2543.12.3.2 Non-Codebook Based UL Transmission 2553.12.4 Uplink Transmit Processings 2553.12.4.1 PHY Processing for PUSCH 2553.12.5 Bandwidth Adaptation 2563.12.5.1 Overview 2563.12.5.2 Support for Narrow-Band UE in a Wide-Band Cell 2573.12.5.3 Saving Battery with Bandwidth Adaptation 2573.12.5.4 Spectrum Flexibility 2603.12.6 Radio Network Temporary Identifiers (RNTI) 2604 Main Radio Interface Related System Procedures 261Jorma Kaikkonen, Sami Hakola, Emad Farag, Mihai Enescu, Claes Tidestav, Juha Karjalainen, Timo Koskela, Sebastian Faxér, Dawid Koziol, and Helka-Liina Määttänen4.1 Initial Access (Jorma Kaikkonen, Sami Hakola, Nokia Bell Labs, Finland, Emad Farag, Nokia Bell Labs, USA) 2614.1.1 Cell Search 2614.1.1.1 SS/PBCH Block Time Pattern 2624.1.1.2 Initial Cell Selection Related Assistance Information 2654.1.2 Random Access 2654.1.2.1 Introduction 2654.1.2.2 Higher Layer Random Access Procedures 2664.1.2.3 Random Access Use Cases 2744.1.2.4 Physical Layer Random Access Procedures 2744.1.2.5 RACH in Release 16 2834.2 Beam Management (Mihai Enescu, Nokia Bell Labs, Finland, Claes Tidestav, Ericsson, Sweden, Sami Hakola, Juha Karjalainen, Nokia Bell Labs, Finland) 2874.2.1 Introduction to Beam Management 2874.2.2 Beam Management Procedures 2894.2.2.1 Beamwidths 2914.2.2.2 Beam Determination 2914.2.3 Beam Indication Framework for DL Quasi Co-location and TCI States 2964.2.3.1 QCL 2964.2.3.2 TCI Framework 2974.2.4 Beam Indication Framework for UL Transmission 3034.2.4.1 SRS Configurations 3054.2.4.2 Signaling Options for SRS Used for UL Beam Management 3064.2.4.3 Beam Reporting from a UE with Multiple Panels 3064.2.5 Reporting of L1-RSRP 3074.2.6 Beam Failure Detection and Recovery 3124.2.6.1 Overview 3124.2.6.2 Beam Failure Detection 3134.2.6.3 New Candidate Beam Selection 3144.2.6.4 Recovery Request and Response 3154.2.6.5 Completion of BFR Procedure 3164.3 CSI Framework (Sebastian Faxér, Ericsson, Sweden) 3174.3.1 Reporting and Resource Settings 3184.3.2 Reporting Configurations and CSI Reporting Content 3234.3.2.1 The Different CSI Parameters 3234.3.2.2 CSI-RS Resource Indicator (CRI) 3234.3.2.3 SSB Resource Indicator 3244.3.2.4 Precoder Matrix Indicator (PMI) and Rank Indicator (RI) 3244.3.2.5 Channel Quality Indicator (CQI) 3254.3.2.6 Layer Indicator (LI) 3274.3.2.7 Layer-1 Reference Signal Received Power (L1-RSRP) 3274.3.2.8 Reporting Quantities 3274.3.2.9 Frequency-Granularity 3314.3.2.10 Measurement Restriction of Channel and Interference 3324.3.2.11 Codebook Configuration 3334.3.2.12 NZP CSI-RS Based Interference Measurement 3334.3.3 Triggering/Activation of CSI Reports and CSI-RS 3344.3.3.1 Aperiodic CSI-RS/IM and CSI Reporting 3344.3.3.2 Semi-Persistent CSI-RS/IM and CSI Reporting 3354.3.4 UCI Encoding 3374.3.4.1 Collision Rules and Priority Order 3384.3.4.2 Partial CSI Omission for PUSCH-Based CSI 3394.3.5 CSI Processing Criteria 3404.3.6 CSI Timeline Requirement 3414.3.7 Codebook-Based Feedback 3444.3.7.1 Motivation for the Use of DFT Codebooks 3464.3.7.2 DL Type I Codebook 3494.3.7.3 DL Type II Codebook 3524.4 Radio Link Monitoring (Claes Tidestav, Ericsson, Sweden, Dawid Koziol, Nokia Bell Labs, Poland) 3564.4.1 Causes of Radio Link Failure 3574.4.1.1 Physical Layer Problem 3574.4.1.2 Random Access Failure 3634.4.1.3 RLC Failure 3644.4.2 Actions After RLF 3654.4.2.1 RLF in MCG 3654.4.2.2 RLF in SCG 3684.4.3 Relation Between RLM/RLF and BFR 3684.5 Radio Resource Management (RRM) and Mobility (Helka-Liina Määttänen, Ericsson, Finland, Dawid Koziol, Nokia Bell Labs, Poland, Claes Tidestav, Ericsson, Sweden) 3704.5.1 Introduction 3704.5.2 UE Mobility Measurements 3714.5.2.1 NR Mobility Measurement Quantities 3724.5.2.2 SS/PBCH Block Measurement Timing Configuration (SMTC) 3744.5.2.3 SS/PBCH Block Transmission in Frequency Domain 3764.5.3 Connected Mode Mobility 3764.5.3.1 Overview of RRM Measurements 3784.5.3.2 Measurement Configuration 3784.5.3.3 Performing RRM Measurements 3834.5.3.4 Handover Procedure 3844.5.4 Idle and Inactive Mode Mobility 3884.5.4.1 Introduction 3884.5.4.2 Cell Selection and Reselection 3894.5.4.3 Location Registration Udate 3934.5.4.4 Division of IDLE Mode Tasks between NAS and AS Layers 3965 Performance Characteristics of 5G New Radio 397Fred Vook5.1 Introduction 3975.2 Sub-6 GHz: Codebook-Based MIMO in NR 3985.2.1 Antenna Array Configurations 3985.2.2 System Modeling 3995.2.3 Downlink CSI Feedback and MIMO Transmission Schemes 3995.2.4 Traffic Models and Massive MIMO 4015.2.5 Performance in Full Buffer Traffic 4015.2.6 Performance in Bursty (FTP) Traffic 4045.2.7 Performance of NR Type II CSI 4115.3 NR MIMO Performance in mmWave Bands 4135.4 Concluding Remarks 4166 UE Features 419Mihai Enescu6.1 Reference Signals 4226.1.1 DM-RS 4226.1.2 CSI-RS 4236.1.3 PT-RS 4246.1.4 SRS 4246.1.5 TRS 4256.1.6 Beam Management 4266.1.7 TCI and QCL 4286.1.8 Beam Failure Detection 4286.1.9 RLM 4296.1.10 CSI Framework 429References 433Index 437
MIHAI ENESCU, PHD, is Senior Specialist, 5G Radio Standardization, Nokia Bell Labs, Finland. He has worked for Nokia for 14 years in 3GPP standardization on various physical layer topics. He is currently working on multi-antenna techniques for 5G technology and he is also serving as editor of 3GPP technical specification "NR; Physical Layer procedures for data" (38.214).
1997-2024 DolnySlask.com Agencja Internetowa