In the original formulation of quantum mechanics the existence of a precise border between a microscopic world, governed by quantum mechanics, and a macroscopic world, described by classical mechanics was assumed. Modern theoretical and experimental physics has moved that border several times, carefully investigating its definition and making available to observation larger and larger quantum systems. The present book examines a paradigmatic case of the transition from quantum to classical behavior: A quantum particle is revealed in a tracking chamber as a trajectory obeying the laws of...

In the original formulation of quantum mechanics the existence of a precise border between a microscopic world, governed by quantum mechanics, and a m...

This book continues the fundamental work of Arnold Sommerfeld and David Hestenes formulating theoretical physics in terms of Minkowski space-time geometry. We see how the standard matrix version of the Dirac equation can be reformulated in terms of a real space-time algebra, thus revealing a geometric meaning for the "number i" in quantum mechanics. Next, it is examined in some detail how electroweak theory can be integrated into the Dirac theory and this way interpreted in terms of space-time geometry. Finally, some implications for quantum electrodynamics are considered. The presentation of...

This book continues the fundamental work of Arnold Sommerfeld and David Hestenes formulating theoretical physics in terms of Minkowski space-time geom...

This book provides an original introduction to the geometry of Minkowski space-time. A hundred years after the space-time formulation of special relativity by Hermann Minkowski, it is shown that the kinematical consequences of special relativity are merely a manifestation of space-time geometry.

The book is written with the intention of providing students (and teachers) of the first years of University courses with a tool which is easy to be applied and allows the solution of any problem of relativistic kinematics at the same time. The book treats in a rigorous way, but using a...

This book provides an original introduction to the geometry of Minkowski space-time. A hundred years after the space-time formulation of special re...

The subject of this book is the physics of vortices. A detailed analysis of the dynamics of vortices will be presented. The important topics of vorticity and molecular spin will be dealt with, including the electromagnetic analogy and quantization in superfluids. The effect of molecular spin on the dynamics of molecular nano-confined fluids using the extended Navier-Stokes equations will also be covered -especially important to the theory and applicability of nanofluidics and associated devices. The nanoscale boundary layer and nanoscale vortex core are regions of intense vorticity (molecular...

The subject of this book is the physics of vortices. A detailed analysis of the dynamics of vortices will be presented. The important topics of vortic...

In this brief we review several approaches that provide super resolved imaging, overcoming the geometrical limitation of the detector as well as the diffraction effects set by the F number of the imaging lens. In order to obtain the super resolved enhancement, we use spatially non-uniform and/or random transmission structures to encode the image or the aperture planes. The desired resolution enhanced images are obtained by post-processing decoding of the captured data.

In this brief we review several approaches that provide super resolved imaging, overcoming the geometrical limitation of the detector as well as th...

This brief provides an in-depth overview of the physics of hadron therapy, ranging from the history to the latest contributions to the subject. It covers the mechanisms of protons and carbon ions at the molecular level (DNA breaks and proteins 53BP1 and RPA), the physics and mathematics of accelerators (Cyclotron and Synchrotron), microdosimetry measurements (with new results so far achieved), and Monte Carlo simulations in hadron therapy using FLUKA (CERN) and MCHIT (FIAS) software. The text also includes information about proton therapy centers and carbon ion centers (PTCOG), as well as a...

This brief provides an in-depth overview of the physics of hadron therapy, ranging from the history to the latest contributions to the subject. It cov...

The ionization of atoms and molecules in strong laser fields is an active field in modern physics and has versatile applications in such as attosecond physics, X-ray generation, inertial confined fusion (ICF), medical science and so on. Classical Trajectory Perspective of Atomic Ionization in Strong Laser Fields covers the basic concepts in this field and discusses many interesting topics using the semiclassical model of classical trajectory ensemble simulation, which is one of the most successful ionization models and has the advantages of a clear picture, feasible computing and...

The ionization of atoms and molecules in strong laser fields is an active field in modern physics and has versatile applications in such as attosecond...

Dynamics of astrophysical systems is often described by plasma physics, yet understanding the nature of plasma turbulence remains as a challenge in physics in both theories and experiments. This book is an up-to-date summary and review of recent results in research on waves and turbulence in near-Earth space plasma turbulence, obtained by Cluster, the multi-spacecraft mission. Spatial and temporal structures of solar wind turbulence as well as its interaction with the bow shock ahead of the Earth are presented using Cluster data. The book presents (1) historical developments, (2) theoretical...

Dynamics of astrophysical systems is often described by plasma physics, yet understanding the nature of plasma turbulence remains as a challenge in ph...

Revising the fundamental theory of open quantum systems in light of current progress, this book develops a unified approach by merging concepts and methods typically used in quantum optics, condensed matter, chemical physics and mathematical physics.

Revising the fundamental theory of open quantum systems in light of current progress, this book develops a unified approach by merging concepts and me...

Theory, Analysis and Design of RF Interferometric Sensors presents the theory, analysis and design of RF interferometric sensors. RF interferometric sensors are attractive for various sensing applications that require every fine resolution and accuracy as well as fast speed. The book also presents two millimeter-wave interferometric sensors realized using RF integrated circuits. The developed millimeter-wave homodyne sensor shows sub-millimeter resolution in the order of 0.05 mm without correction for the non-linear phase response of the sensor's quadrature mixer. The designed...

Theory, Analysis and Design of RF Interferometric Sensors presents the theory, analysis and design of RF interferometric sensors. RF interferom...