Here is an overview of modern computational stabilization methods for linear inversion, with applications to a variety of problems in audio processing, medical imaging, seismology, astronomy, and other areas. Rank-deficient problems involve matrices that are exactly or nearly rank deficient. Such problems often arise in connection with noise suppression and other problems where the goal is to suppress unwanted disturbances of given measurements. Discrete ill-posed problems arise in connection with the numerical treatment of inverse problems, where one typically wants to compute information...
Here is an overview of modern computational stabilization methods for linear inversion, with applications to a variety of problems in audio processing...