The purpose of this book is to introduce two recent topics in mathematical physics and probability theory: the Schramm Loewner evolution (SLE) and interacting particle systems related to random matrix theory. A typical example of the latter systems is Dyson's Brownian motion (BM) model. The SLE and Dyson's BM model may be considered as "children" of the Bessel process with parameter D, BES(D), and the SLE and Dyson's BM model as "grandchildren" of BM. In Chap. 1 the parenthood of BM in diffusion processes is clarified and BES(D) is defined for any D 1. Dependence...
The purpose of this book is to introduce two recent topics in mathematical physics and probability theory: the Schramm Loewner evolution (SLE) and int...
In this volume a theory for models of transport in the presence of a free boundary is developed.Macroscopic laws of transport are described by PDE's. When the system is open, there are several mechanisms to couple the system with the external forces. Here a class of systems where the interaction with the exterior takes place in correspondence of a free boundary is considered. Both continuous and discrete models sharing the same structure are analysed. In Part I a free boundary problem related to the Stefan Problem is worked out in all details. For this model a new notion of relaxed solution...
In this volume a theory for models of transport in the presence of a free boundary is developed.Macroscopic laws of transport are described by PDE's. ...
Lieb-Robinson bounds for multi-commutators are effective mathematical tools to handle analytic aspects of infinite volume dynamics of non-relativistic quantum particles with short-range, possibly time-dependent interactions.In particular, the existence of fundamental solutions is shown for those (non-autonomous) C*-dynamical systems for which the usual conditions found in standard theories of (parabolic or hyperbolic) non-autonomous evolution equations are not given. In mathematical physics, bounds on multi-commutators of an order higher than two can be used to study linear and non-linear...
Lieb-Robinson bounds for multi-commutators are effective mathematical tools to handle analytic aspects of infinite volume dynamics of non-relativistic...
This book gives a complete classification of all algebras with the Kadison-Singer property, when restricting to separable Hilbert spaces. The Kadison-Singer property deals with the following question: given a Hilbert space H and an abelian unital C*-subalgebra A of B(H), does every pure state on A extend uniquely to a pure state on B(H)? This question has deep connections to fundamental aspects of quantum physics, as is explained in the foreword by Klaas Landsman. The book starts with an accessible introduction to the concept of states...
This book gives a complete classification of all algebras with the Kadison-Singer property, when restricting to separable Hilbert spaces. The Kadison-...
This book explores combinatorial problems and insights in quantum field theory. It is not comprehensive, but rather takes a tour, shaped by the author's biases, through some of the important ways that a combinatorial perspective can be brought to bear on quantum field theory. Among the outcomes are both physical insights and interesting mathematics.
The book begins by thinking of perturbative expansions as kinds of generating functions and then introduces renormalization Hopf algebras. The remainder is broken into two parts. The first part looks at Dyson-Schwinger equations, stepping...
This book explores combinatorial problems and insights in quantum field theory. It is not comprehensive, but rather takes a tour, shaped by the aut...
This book introduces the reader to basic notions of integrable techniques for one-dimensional quantum systems. In a pedagogical way, a few examples of exactly solvable models are worked out to go from the coordinate approach to the Algebraic Bethe Ansatz, with some discussion on the finite temperature thermodynamics. The aim is to provide the instruments to approach more advanced books or to allow for a critical reading of research articles and the extraction of useful information from them. We describe the solution of the anisotropic XY spin chain; of the Lieb-Liniger model of bosons with...
This book introduces the reader to basic notions of integrable techniques for one-dimensional quantum systems. In a pedagogical way, a few examples of...
This book treats ensembles of Young diagrams originating from group-theoretical contexts and investigates what statistical properties are observed there in a large-scale limit.
This book treats ensembles of Young diagrams originating from group-theoretical contexts and investigates what statistical properties are observed the...
This book presents a detailed study of a system of interacting Brownian motions in one dimension. The interaction is point-like such that the n-th Brownian motion is reflected from the Brownian motion with label n-1. This model belongs to the Kardar-Parisi-Zhang (KPZ) universality class. In fact, because of the singular interaction, many universal properties can be established with rigor. They depend on the choice of initial conditions. Discussion addresses packed and periodic initial conditions (Chapter 5), stationary initial conditions (Chapter 6), and mixtures thereof (Chapter 7). The...
This book presents a detailed study of a system of interacting Brownian motions in one dimension. The interaction is point-like such that the n-th Bro...
This is a first book to show that the theory of the Gaussian random matrix is essential to understand the universal correlations with random fluctuations and to demonstrate that it is useful to evaluate topological universal quantities. We consider Gaussian random matrix models in the presence of a deterministic matrix source. In such models the correlation functions are known exactly for an arbitrary source and for any size of the matrices. The freedom given by the external source allows for various tunings to different classes of universality. The main interest is to use this freedom to...
This is a first book to show that the theory of the Gaussian random matrix is essential to understand the universal correlations with random fluctuati...