This book provides a concise overview of the physical basics of different forms of renewable energy (water, waves, wind, solar, thermal, geothermal, biofuels), focusing on the physical limits for the efficiency and energy densities of different current technologies. It also discusses relevant aspects of materials science, physical chemistry, and biophysics. The book is based on the lecture notes of a course taught at TU München to undergraduate and graduate students of Applied Physics and related engineering disciplines. It provides material that can be taught in a one-semester course with 4...
This book provides a concise overview of the physical basics of different forms of renewable energy (water, waves, wind, solar, thermal, geothermal, b...
This textbook provides a comprehensive introduction to the physics of laser-plasma interactions (LPI), based on a graduate course taught by the author. The emphasis is on high-energy-density physics (HEDP) and inertial confinement fusion (ICF), with a comprehensive description of the propagation, absorption, nonlinear effects and parametric instabilities of high energy lasers in plasmas.The recent demonstration of a burning plasma on the verge of nuclear fusion ignition at the National Ignition Facility in Livermore, California, has marked the beginning of a new era of ICF and fusion...
This textbook provides a comprehensive introduction to the physics of laser-plasma interactions (LPI), based on a graduate course taught by the author...
This book presents a clear and concise introduction to the field of nonlinear dynamics and chaos, suitable for graduate students in mathematics, physics, chemistry, engineering, and in natural sciences in general. This second edition includes additional material and in particular a new chapter on dissipative nonlinear systems. The book provides a thorough and modern introduction to the concepts of dynamical systems' theory combining in a comprehensive way classical and quantum mechanical description. It is based on lectures on classical and quantum chaos held by the author at Heidelberg and...
This book presents a clear and concise introduction to the field of nonlinear dynamics and chaos, suitable for graduate students in mathematics, physi...
A wide-ranging review of modern spectroscopic techniques such as X-ray, photoelectron, optical and laser spectroscopy, and radiofrequency and microwave techniques. On the fundamental side the book focuses on physical principles and the impact of spectroscopy on our understanding of the building blocks of matter, while in the area of applications particular attention is given to those in chemical analysis, photochemistry, surface characterisation, environmental and medical diagnostics, remote sensing and astrophyscis. The Fourth Edition also provides the reader with an update on laser cooling...
A wide-ranging review of modern spectroscopic techniques such as X-ray, photoelectron, optical and laser spectroscopy, and radiofrequency and microwav...
This book offers a concise and coherent introduction to accelerator physics and technology at the fundamental level but still in connection to advanced applications ranging from high-energy colliders to most advanced light sources, i.e., Compton sources, storage rings and free-electron lasers. The book is targeted at accelerator physics students at both undergraduate and graduate levels, but also of interest also to Ph.D. students and senior scientists not specialized in beam physics and accelerator design, or at the beginning of their career in particle accelerators.The book introduces...
This book offers a concise and coherent introduction to accelerator physics and technology at the fundamental level but still in connection to advance...
This textbook presents a detailed description of basic semiconductor physics, covering a wide range of important phenomena in semiconductors, from simple to advanced. It introduces and explains four different methods of energy band calculations in the full band region and covers fundamental topics such as the effective mass approximation and electron motion in a periodic potential, the Boltzmann transport equation, and deformation potentials used for the analysis of transport properties. The text also examines experimental and theoretical analyses of cyclotron resonance in detail and reviews...
This textbook presents a detailed description of basic semiconductor physics, covering a wide range of important phenomena in semiconductors, from sim...
This book, the first in a three-volume set, explains general relativity using the mathematical tool of differential geometry. The book consists of ten chapters, the first five of which introduce differential geometry, which is widely applicable even outside the field of relativity. Chapter 6 analyzes special relativity using geometric language. In turn, the last four chapters introduce readers to the fundamentals of general relativity. Intended for beginners, this volume includes numerous exercises and worked-out example in each chapter to facilitate the learning experience. Chiefly written...
This book, the first in a three-volume set, explains general relativity using the mathematical tool of differential geometry. The book consists of ten...
This textbook provides a thorough explanation of the physical concepts and presents the general theory of different forms through approximations of the neutron transport processes in nuclear reactors and emphasize the numerical computing methods that lead to the prediction of neutron behavior.Detailed derivations and thorough discussions are the prominent features of this book unlike the brevity and conciseness which are the characteristic of most available textbooks on the subject where students find them difficult to follow. This conclusion has been reached from the experience gained...
This textbook provides a thorough explanation of the physical concepts and presents the general theory of different forms through approximations of th...
This textbook presents a comprehensive introduction to ultrafast laser physics with a keen awareness of the needs of graduate students. It is self-contained and ready to use for both ultrafast laser courses and background for experimental investigation in the lab. The book starts with an advanced introduction to linear and nonlinear pulse propagation, details Q-switching and modelocking and goes into detail while explaining ultrashort pulse generation and measurement. Finally, the characterization of the laser signals is illustrated, and a broad range of applications presented. A multitude of...
This textbook presents a comprehensive introduction to ultrafast laser physics with a keen awareness of the needs of graduate students. It is self-con...