• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

SQA Defect Prediction: An SVM Based In-Appendage Software Log Analysis » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946600]
• Literatura piękna
 [1856966]

  więcej...
• Turystyka
 [72221]
• Informatyka
 [151456]
• Komiksy
 [35826]
• Encyklopedie
 [23190]
• Dziecięca
 [619653]
• Hobby
 [140543]
• AudioBooki
 [1577]
• Literatura faktu
 [228355]
• Muzyka CD
 [410]
• Słowniki
 [2874]
• Inne
 [445822]
• Kalendarze
 [1744]
• Podręczniki
 [167141]
• Poradniki
 [482898]
• Religia
 [510455]
• Czasopisma
 [526]
• Sport
 [61590]
• Sztuka
 [243598]
• CD, DVD, Video
 [3423]
• Technologie
 [219201]
• Zdrowie
 [101638]
• Książkowe Klimaty
 [124]
• Zabawki
 [2473]
• Puzzle, gry
 [3898]
• Literatura w języku ukraińskim
 [254]
• Art. papiernicze i szkolne
 [8170]
Kategorie szczegółowe BISAC

SQA Defect Prediction: An SVM Based In-Appendage Software Log Analysis

ISBN-13: 9783659581908 / Angielski / Miękka / 2015 / 176 str.

Rajasekhar Reddy Nandireddy
SQA Defect Prediction: An SVM Based In-Appendage Software Log Analysis Rajasekhar Reddy Nandireddy 9783659581908 LAP Lambert Academic Publishing - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

SQA Defect Prediction: An SVM Based In-Appendage Software Log Analysis

ISBN-13: 9783659581908 / Angielski / Miękka / 2015 / 176 str.

Rajasekhar Reddy Nandireddy
cena 322,36 zł
(netto: 307,01 VAT:  5%)

Najniższa cena z 30 dni: 322,36 zł
Termin realizacji zamówienia:
ok. 10-14 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!

Software Quality Assurance is an important factor in IT industry.The work reported in this thesis arose as part of an idea whose goal is to develop an adaptive SQA by defect prediction.In this regard we use SVM machine learning approach to predict the degree of fault proneness of software modules. The machine learning technique for defect forecasting and handling SQA called appendage log training and analysis can be referred as ALTA.The proposed defect forecasting of in-appendage software development log works is to deal the forecasted defects accurately and spontaneously while developing the software.In defect prediction process we opt machine learning technique called least square support vector machines in short LSSVM. The defect prediction stage of the ALTA targets the development logs available as input to train the LSSVM for better predictions.The future extraction process that is part of SVM training Process can be done with support of mathematical model called Intensified worst particle based Quantum Particle Swarm Optimization(QPSO).The QPSO algorithm and LSSVM, works as an intelligent system to predict defects to improve the software quality

Software Quality Assurance is an important factor in IT industry.The work reported in this thesis arose as part of an idea whose goal is to develop an adaptive SQA by defect prediction.In this regard we use SVM machine learning approach to predict the degree of fault proneness of software modules. The machine learning technique for defect forecasting and handling SQA called appendage log training and analysis can be referred as ALTA.The proposed defect forecasting of in-appendage software development log works is to deal the forecasted defects accurately and spontaneously while developing the software.In defect prediction process we opt machine learning technique called least square support vector machines in short LSSVM. The defect prediction stage of the ALTA targets the development logs available as input to train the LSSVM for better predictions.The future extraction process that is part of SVM training Process can be done with support of mathematical model called Intensified worst particle based Quantum Particle Swarm Optimization(QPSO).The QPSO algorithm and LSSVM,works as an intelligent system to predict defects to improve the software quality.

Kategorie:
Technologie
Kategorie BISAC:
Technology & Engineering > General
Wydawca:
LAP Lambert Academic Publishing
Język:
Angielski
ISBN-13:
9783659581908
Rok wydania:
2015
Ilość stron:
176
Waga:
0.27 kg
Wymiary:
22.86 x 15.24 x 1.04
Oprawa:
Miękka
Wolumenów:
01

N.RAJASEKHAR REDDY is Professor in the Department of Computer Science and Engineering at visvesvaraya Technological University.His research in the areas of SoftwareEngineering and Data Mining Systems.He was published 15 International Journals include IEEE,ACM and attended 10 international Conferences and several NationalConferences across the World



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia