• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

The Pullback Equation for Differential Forms » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2952079]
• Literatura piękna
 [1850969]

  więcej...
• Turystyka
 [71058]
• Informatyka
 [151066]
• Komiksy
 [35579]
• Encyklopedie
 [23181]
• Dziecięca
 [620496]
• Hobby
 [139036]
• AudioBooki
 [1646]
• Literatura faktu
 [228729]
• Muzyka CD
 [379]
• Słowniki
 [2932]
• Inne
 [445708]
• Kalendarze
 [1409]
• Podręczniki
 [164793]
• Poradniki
 [480107]
• Religia
 [510956]
• Czasopisma
 [511]
• Sport
 [61267]
• Sztuka
 [243299]
• CD, DVD, Video
 [3411]
• Technologie
 [219640]
• Zdrowie
 [100984]
• Książkowe Klimaty
 [124]
• Zabawki
 [2281]
• Puzzle, gry
 [3363]
• Literatura w języku ukraińskim
 [258]
• Art. papiernicze i szkolne
 [8020]
Kategorie szczegółowe BISAC

The Pullback Equation for Differential Forms

ISBN-13: 9780817683122 / Angielski / Twarda / 2011 / 436 str.

Gyula Csató; Bernard Dacorogna; Olivier Kneuss
The Pullback Equation for Differential Forms Csató, Gyula; Dacorogna, Bernard; Kneuss, Olivier 9780817683122 Birkhäuser - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

The Pullback Equation for Differential Forms

ISBN-13: 9780817683122 / Angielski / Twarda / 2011 / 436 str.

Gyula Csató; Bernard Dacorogna; Olivier Kneuss
cena 523,30
(netto: 498,38 VAT:  5%)

Najniższa cena z 30 dni: 501,19
Termin realizacji zamówienia:
ok. 22 dni roboczych.

Darmowa dostawa!

An important question in geometry and analysis is to know when two k-forms f and g are equivalent through a change of variables. The problem is therefore to find a map φ so that it satisfies the pullback equation: φ*(g) = f. In more physical terms, the question under consideration can be seen as a problem of mass transportation. The problem has received considerable attention in the cases k = 2 and k = n, but much less when 3 k n-1. The present monograph provides the first comprehensive study of the equation. The work begins by recounting various properties of exterior forms and differential forms that prove useful throughout the book. From there it goes on to present the classical Hodge-Morrey decomposition and to give several versions of the Poincare lemma. The core of the book discusses the case k = n, and then the case 1k n-1 with special attention on the case k = 2, which is fundamental in symplectic geometry. Special emphasis is given to optimal regularity, global results and boundary data. The last part of the work discusses Holder spaces in detail; all the results presented here are essentially classical, but cannot be found in a single book. This section may serve as a reference on Holder spaces and therefore will be useful to mathematicians well beyond those who are only interested in the pullback equation. The Pullback Equation for Differential Forms is a self-contained and concise monograph intended for both geometers and analysts. The book may serve as a valuable reference for researchers or a supplemental text for graduate courses or seminars.

An important question in geometry and analysis is to know when two k-forms f and g are equivalent through a change of variables. The problem is therefore to find a map so that it satisfies the pullback equation: (g) = f.§In more physical terms, the question under consideration can be seen as a problem of mass transportation. The problem has received considerable attention in the cases k = 2 and k = n, but much less when 3 k n 1. The present monograph provides the first comprehensive study of the equation.§The work begins by recounting various properties of exterior forms and differential forms that prove useful throughout the book. From there it goes on to present the classical Hodge Morrey decomposition and to give several versions of the Poincaré lemma. The core of the book discusses the case k = n, and then the case 1 k n 1 with special attention on the case k = 2, which is fundamental in symplectic geometry. Special emphasis is given to optimal regularity, global results and boundary data. The last part of the work discusses Hölder spaces in detail; all the results presented here are essentially classical, but cannot be found in a single book. This section may serve as a reference on Hölder spaces and therefore will be useful to mathematicians well beyond those who are only interested in the pullback equation.§The Pullback Equation for Differential Forms is a self-contained and concise monograph intended for both geometers and analysts. The book may serve as a valuable reference for researchers or a supplemental text for graduate courses or seminars.

Kategorie:
Nauka, Matematyka
Kategorie BISAC:
Mathematics > Algebra - Liniowa
Mathematics > Równania różniczkowe
Mathematics > Geometry - Differential
Wydawca:
Birkhäuser
Język:
Angielski
ISBN-13:
9780817683122
Rok wydania:
2011
Wydanie:
2012
Numer serii:
000303036
Ilość stron:
436
Waga:
0.80 kg
Wymiary:
23.39 x 15.6 x 2.54
Oprawa:
Twarda
Wolumenów:
01
Dodatkowe informacje:
Bibliografia

From the reviews:

"This monograph provides a systematic study of the pullback equation, presenting results on local and global existence of solutions and regularity. ... It is very likely that this book will become an indispensable reference and source of inspiration for everybody interested in this subject. ... The book starts with an introductory chapter which serves as a user's guide for the rest of the book ... . The book is completed by an index and a list of references consisting of over 100 entries." (Pietro Celada, Mathematical Reviews, April, 2013)

"This book studies the pullback equation for differential forms ... . The principal emphasis of this book is put upon regularity and boundary conditions. Special attention has been paid upon getting optimal regularity, which requires estimates for elliptic equations and fine properties of Hölder spaces. The book will presumably appeal to both geometers and analysts." (Hirokazu Nishimura, Zentralblatt MATH, Vol. 1247, 2012)

Introduction.- Part I Exterior and Differential Forms.- Exterior Forms and the Notion of Divisibility.- Differential Forms.- Dimension Reduction.- Part II Hodge-Morrey Decomposition and Poincaré Lemma.- An Identity Involving Exterior Derivatives and Gaffney Inequality.- The Hodge-Morrey Decomposition.- First-Order Elliptic Systems of Cauchy-Riemann Type.- Poincaré Lemma.- The Equation div u = f.- Part III The Case k = n.- The Case f × g > 0.- The Case Without  Sign Hypothesis on f.- Part IV The Case 0 ≤ k ≤ n–1.- General Considerations on the Flow Method.- The Cases k = 0 and k = 1.- The Case k = 2.- The Case 3 ≤ k ≤ n–1.- Part V Hölder Spaces.- Hölder Continuous Functions.- Part VI Appendix.- Necessary Conditions.- An Abstract Fixed Point Theorem.- Degree Theory.- References.- Further Reading.- Notations.- Index. 

Csato, Dacorogna, and Kneuss teach at Ecole Polytechnique Fédérale de Lausanne in Switzerland.

An important question in geometry and analysis is to know when two k-forms f and g are equivalent through a change of variables. The problem is therefore to find a map φ so that it satisfies the pullback equation: φ*(g) = f. 

In more physical terms, the question under consideration can be seen as a problem of mass transportation. The problem has received considerable attention in the cases k = 2 and k = n, but much less when 3 ≤ k ≤ n–1. The present monograph provides the first comprehensive study of the equation.

The work begins by recounting various properties of exterior forms and differential forms that prove useful throughout the book. From there it goes on to present the classical Hodge–Morrey decomposition and to give several versions of the Poincaré lemma. The core of the book discusses the case k = n, and then the case 1≤ k ≤ n–1 with special attention on the case k = 2, which is fundamental in symplectic geometry. Special emphasis is given to optimal regularity, global results and boundary data. The last part of the work discusses Hölder spaces in detail; all the results presented here are essentially classical, but cannot be found in a single book. This section may serve as a reference on Hölder spaces and therefore will be useful to mathematicians well beyond those who are only interested in the pullback equation.

The Pullback Equation for Differential Forms is a self-contained and concise monograph intended for both geometers and analysts. The book may serve as a valuable reference for researchers or a supplemental text for graduate courses or seminars.



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2026 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia