ISBN-13: 9780198535775 / Angielski / Twarda / 1992 / 268 str.
This book introduces recently developed ideas and techniques in semigroup theory to provide a handy reference guide previously unavailable in a single volume. The opening chapter provides sufficient background to enable the reader to follow any of the subsequent chapters, and would by itself be suitable for a first course in semigroup theory. The second chapter gives an account of free inverse semigroups leading to proofs of the McAlister P-theorems. Subsequent chapters have the underlying theme of diagrams and mappings, and the new material includes the theory of biordered sets of Nambooripad and Easdown, the semigroup diagrams of Remmers and Jackson with applications to the one-relator, and other word problems, a short proof of Isbell's Zigzag theorem with applications to epimorphisms and amalgams, together with combinatorial, probabalistic and graphical techniques used to prove results including Schein's Covering Theorem and Howie's Gravity Formula for finite full transformation semigroups. Nearly two hundred exercises serve the dual purpose of illustrating the richness of the subject while allowing the reader to come to grips with the material.
Recently developed techniques in semigroup theory are introduced in a single self-contained volume. The trend is from the abstract to the combinatorial, with new probalistic and word-problem results of interest to students of computer science and algebra alike. The richness of the field is illustrated through 170 exercises.