• Wyszukiwanie zaawansowane
  • Kategorie
  • Kategorie BISAC
  • Książki na zamówienie
  • Promocje
  • Granty
  • Książka na prezent
  • Opinie
  • Pomoc
  • Załóż konto
  • Zaloguj się

Multivariate Statistics for Wildlife and Ecology Research » książka

zaloguj się | załóż konto
Logo Krainaksiazek.pl

koszyk

konto

szukaj
topmenu
Księgarnia internetowa
Szukaj
Książki na zamówienie
Promocje
Granty
Książka na prezent
Moje konto
Pomoc
 
 
Wyszukiwanie zaawansowane
Pusty koszyk
Bezpłatna dostawa dla zamówień powyżej 20 złBezpłatna dostawa dla zamówień powyżej 20 zł

Kategorie główne

• Nauka
 [2946600]
• Literatura piękna
 [1856966]

  więcej...
• Turystyka
 [72221]
• Informatyka
 [151456]
• Komiksy
 [35826]
• Encyklopedie
 [23190]
• Dziecięca
 [619653]
• Hobby
 [140543]
• AudioBooki
 [1577]
• Literatura faktu
 [228355]
• Muzyka CD
 [410]
• Słowniki
 [2874]
• Inne
 [445822]
• Kalendarze
 [1744]
• Podręczniki
 [167141]
• Poradniki
 [482898]
• Religia
 [510455]
• Czasopisma
 [526]
• Sport
 [61590]
• Sztuka
 [243598]
• CD, DVD, Video
 [3423]
• Technologie
 [219201]
• Zdrowie
 [101638]
• Książkowe Klimaty
 [124]
• Zabawki
 [2473]
• Puzzle, gry
 [3898]
• Literatura w języku ukraińskim
 [254]
• Art. papiernicze i szkolne
 [8170]
Kategorie szczegółowe BISAC

Multivariate Statistics for Wildlife and Ecology Research

ISBN-13: 9780387988917 / Angielski / Twarda / 2000 / 283 str.

Kevin McGarigal; K. McGarigal; S. Cushman
Multivariate Statistics for Wildlife and Ecology Research Kevin McGarigal K. McGarigal S. Cushman 9780387988917 Springer - książkaWidoczna okładka, to zdjęcie poglądowe, a rzeczywista szata graficzna może różnić się od prezentowanej.

Multivariate Statistics for Wildlife and Ecology Research

ISBN-13: 9780387988917 / Angielski / Twarda / 2000 / 283 str.

Kevin McGarigal; K. McGarigal; S. Cushman
cena 201,72 zł
(netto: 192,11 VAT:  5%)

Najniższa cena z 30 dni: 192,74 zł
Termin realizacji zamówienia:
ok. 22 dni roboczych
Bez gwarancji dostawy przed świętami

Darmowa dostawa!

Wildlife researchers and ecologists make widespread use of multivariate statistics in their studies. With its focus on the practical application of the techniques of multivariate statistics, this book shapes the powerful tools of statistics for the specific needs of ecologists and makes statistics more applicable to their course of study. Multivariate Statistics for Wildlife and Ecology Research gives the reader a solid conceptual understanding of the role of multivariate statistics in ecological applications and the relationships among various techniques, while avoiding detailed mathematics and underlying theory. More important, the reader will gain insight into the type of research questions best handled by each technique and the important considerations in applying each one. Whether used as a textbook for specialized courses or as a supplement to general statistics texts, the book emphasizes those techniques that students of ecology and natural resources most need to understand and employ in their research. Detailed examples use real wildlife data sets analyzed using the SAS statistical software program. The book is specifically targeted for upper-division and graduate students in wildlife biology, forestry, and ecology, and for professional wildlife scientists and natural resource managers, but it will be valuable to researchers in any of the biological sciences.

Kategorie:
Nauka, Biologia i przyroda
Kategorie BISAC:
Mathematics > Probability & Statistics - Multivariate Analysis
Science > Life Sciences - Ecology
Nature > Ecology
Wydawca:
Springer
Język:
Angielski
ISBN-13:
9780387988917
Rok wydania:
2000
Wydanie:
2000
Ilość stron:
283
Waga:
0.59 kg
Wymiary:
23.39 x 15.6 x 1.75
Oprawa:
Twarda
Wolumenów:
01
Dodatkowe informacje:
Bibliografia
Wydanie ilustrowane

    

1 Introduction and Overview.- 1.1 Objectives.- 1.2 Multivariate Statistics: An Ecological Perspective.- 1.3 Multivariate Description and Inference.- 1.4 Multivariate Confusion!.- 1.5 Types of Multivariate Techniques.- 1.5.1 Ordination.- 1.5.2 Cluster Analysis.- 1.5.3 Discriminant Analysis.- 1.5.4 Canonical Correlation Analysis.- 2 Ordination: Principal Components Analysis.- 2.1 Objectives.- 2.2 Conceptual Overview.- 2.2.1 Ordination.- 2.2.2 Principal Components Analysis (PCA).- 2.3 Geometric Overview.- 2.4 The Data Set.- 2.5 Assumptions.- 2.5.1 Multivariate Normality.- 2.5.2 Independent Random Sample and the Effects of Outliers.- 2.5.3 Linearity.- 2.6 Sample Size Requirements.- 2.6.1 General Rules.- 2.6.2 Specific Rules.- 2.7 Deriving the Principal Components.- 2.7.1 The Use of Correlation and Covariance Matrices.- 2.7.2 Eigenvalues and Associated Statistics.- 2.7.3 Eigenvectors and Scoring Coefficients.- 2.8 Assessing the Importance of the Principal Components.- 2.8.1 Latent Root Criterion.- 2.8.2 Scree Plot Criterion.- 2.8.3 Broken Stick Criterion.- 2.8.4 Relative Percent Variance Criterion.- 2.8.5 Significance Tests.- 2.9 Interpreting the Principal Components.- 2.9.1 Principal Component Structure.- 2.9.2 Significance of Principal Component Loadings.- 2.9.3 Interpreting the Principal Component Structure.- 2.9.4 Communality.- 2.9.5 Principal Component Scores and Associated Plots.- 2.10 Rotating the Principal Components.- 2.11 Limitations of Principal Components Analysis.- 2.12 R-Factor Versus Q-Factor Ordination.- 2.13 Other Ordination Techniques.- 2.13.1 Polar Ordination.- 2.13.2 Factor Analysis.- 2.13.3 Nonmetric Multidimensional Scaling.- 2.13.4 Reciprocal Averaging.- 2.13.5 Detrended Correspondence Analysis.- 2.13.6 Canonical Correspondence Analysis.- Appendix 2.1.- 3 Cluster Analysis.- 3.1 Objectives.- 3.2 Conceptual Overview.- 3.3 The Definition of Cluster.- 3.4 The Data Set.- 3.5 Clustering Techniques.- 3.6 Nonhierarchical Clustering.- 3.6.1 Polythetic Agglomerative Nonhierarchical Clustering.- 3.6.2 Polythetic Divisive Nonhierarchical Clustering.- 3.7 Hierarchical Clustering.- 3.7.1 Polythetic Agglomerative Hierarchical Clustering.- 3.7.2 Polythetic Divisive Hierarchical Clustering.- 3.8 Evaluating the Stability of the Cluster Solution.- 3.9 Complementary Use of Ordination and Cluster Analysis.- 3.10 Limitations of Cluster Analysis.- Appendix 3.1.- 4 Discriminant Analysis.- 4.1 Objectives.- 4.2 Conceptual Overview.- 4.2.1 Overview of Canonical Analysis of Discriminance.- 4.2.2 Overview of Classification.- 4.2.3 Analogy with Multiple Regression Analysis and Multivariate Analysis of Variance.- 4.3 Geometric Overview.- 4.4 The Data Set.- 4.5 Assumptions.- 4.5.1 Equality of Variance-Covariance Matrices.- 4.5.2 Multivariate Normality.- 4.5.3 Singularities and Multicollinearity.- 4.5.4 Independent Random Sample and the Effects of Outliers.- 4.5.5 Prior Probabilities Are Identifiable.- 4.5.6 Linearity 153.- 4.6 Sample Size Requirements.- 4.6.1 General Rules.- 4.6.2 Specific Rules.- 4.7 Deriving the Canonical Functions.- 4.7.1 Stepwise Selection of Variables.- 4.7.2 Eigenvalues and Associated Statistics.- 4.7.3 Eigenvectors and Canonical Coefficients.- 4.8 Assessing the Importance of the Canonical Functions.- 4.8.1 Relative Percent Variance Criterion.- 4.8.2 Canonical Correlation Criterion.- 4.8.3 Classification Accuracy.- 4.8.4 Significance Tests.- 4.8.5 Canonical Scores and Associated Plots.- 4.9 Interpreting the Canonical Functions.- 4.9.1 Standardized Canonical Coefficients.- 4.9.2 Total Structure Coefficients.- 4.9.3 Covariance-Controlled Partial F-Ratios.- 4.9.4 Significance Tests Based on Resampling Procedures.- 4.9.5 Potency Index.- 4.10 Validating the Canonical Functions.- 4.10.1 Split-Sample Validation.- 4.10.2 Validation Using Resampling Procedures.- 4.11 Limitations of Discriminant Analysis.- Appendix 4.1.- 5 Canonical Correlation Analysis.- 5.1 Objectives.- 5.2 Conceptual Overview.- 5.3 Geometric Overview.- 5.4 The Data Set.- 5.5 Assumptions.- 5.5.1 Multivariate Normality.- 5.5.2 Singularities and Multicollinearity.- 5.5.3 Independent Random Sample and the Effects of Outliers.- 5.5.4 Linearity.- 5.6 Sample Size Requirements.- 5.6.1 General Rules.- 5.6.2 Specific Rules.- 5.7 Deriving the Canonical Variates.- 5.7.1 The Use of Covariance and Correlation Matrices.- 5.7.2 Eigenvalues and Associated Statistics.- 5.7.3 Eigenvectors and Canonical Coefficients.- 5.8 Assessing the Importance of the Canonical Variates.- 5.8.1 Canonical Correlation Criterion.- 5.8.2 Canonical Redundancy Criterion.- 5.8.3 Significance Tests.- 5.8.4 Canonical Scores and Associated Plots.- 5.9 Interpreting the Canonical Variates.- 5.9.1 Standardized Canonical Coefficients.- 5.9.2 Structure Coefficients.- 5.9.3 Canonical Cross-Loadings.- 5.9.4 Significance Tests Based on Resampling Procedures.- 5.10 Validating the Canonical Variates.- 5.10.1 Split-Sample Validation.- 5.10.2 Validation Using Resampling Procedures.- 5.11 Limitations of Canonical Correlation Analysis.- Appendix 5.1.- 6 Summary and Comparison.- 6.1 Objectives.- 6.2 Relationship Among Techniques.- 6.2.1 Purpose and Source of Variation Emphasized.- 6.2.2 Statistical Procedure.- 6.2.3 Type of Statistical Technique and Variable Set Characteristics.- 6.2.4 Data Structure.- 6.2.5 Sampling Design.- 6.3 Complementary Use of Techniques.- Appendix: Acronyms Used in This Book.    

    



Udostępnij

Facebook - konto krainaksiazek.pl



Opinie o Krainaksiazek.pl na Opineo.pl

Partner Mybenefit

Krainaksiazek.pl w programie rzetelna firma Krainaksiaze.pl - płatności przez paypal

Czytaj nas na:

Facebook - krainaksiazek.pl
  • książki na zamówienie
  • granty
  • książka na prezent
  • kontakt
  • pomoc
  • opinie
  • regulamin
  • polityka prywatności

Zobacz:

  • Księgarnia czeska

  • Wydawnictwo Książkowe Klimaty

1997-2025 DolnySlask.com Agencja Internetowa

© 1997-2022 krainaksiazek.pl
     
KONTAKT | REGULAMIN | POLITYKA PRYWATNOŚCI | USTAWIENIA PRYWATNOŚCI
Zobacz: Księgarnia Czeska | Wydawnictwo Książkowe Klimaty | Mapa strony | Lista autorów
KrainaKsiazek.PL - Księgarnia Internetowa
Polityka prywatnosci - link
Krainaksiazek.pl - płatnośc Przelewy24
Przechowalnia Przechowalnia